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PREFACE 

Although there are copious publications available that address the 

topic of spectral analysis in general and many that address time series 

data in particular, it is difficult to find information on how to apply 

the general theory to practical data processing. User oriented applica

tion techniques and computer programs are seldom published and canned 

routines save the researcher uneasy as to their biasing effect on the 

results. This research was done in an effort to provide a complete system 

of applied spectral analysis. Special attention was given to describing 

the effects of measurement and sampling error, observer bias, and 

interpretation of results. 

Much of the text is basically tutorial and, as such, is not original 

but the organization and presentation are unique. Except for Chapter XIX, 

the original contributions are discussed in the introduction. The author 

is especially happy with Chapter XIX because it represents several ideas 

on interpretation he believes to be unique. To the fullest extent possible, 

authors of works already published have been gratefully acknowledged by 

the many references. 

The author's major professor, John Basart, has contributed greatly to 

this work through his helpful technical discussions, objective criticism of 

important ideas, and diligent proofreading. His original interest in the 

Maximum Entropy Technique and conviction that it would provide an important 

dissertation topic are the embryos of this work. It could not have been 

completed without his continuing encouragement and patience. 
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The author's very special thanks go to his wife, Kathy, for her con
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with a "student" father. 

The author is indebted to Betty Carter for typing the manuscript and 

for her excellent formatting of many difficult equations. 

Readers interested in these topics are encouraged to contact the 

author concerning the ideas presented not only to discuss their merits but 

also to generate new and better approaches. 

Ames, Iowa 
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I. INTRODUCTION 

The analysis of empirical data for the purpose of determining funda

mental parameters for a physical system is a basic goal for much applied 

research. One of the most important characteristics to be determined is 

the frequency spectrum of the recorded data. Spectral analysis plays an 

important role in many scientific fields such as radio astronongr, meteo

rology, geophysics, mechanics, statistics, communication signal processing, 

econometrics, physics, and biology. Probably the most important research 

applications of spectral analysis are presently in the fields of geophysics 

and astronomy. The most advanced work on the spectral analysis of noisy 

empirical data is being published by geophysicists in connection with oil 

exploration geology. The search for new sources of oil in deeper domes 

and offshore has placed severe requirements on the available methods of 

data processing. To Improve the spectral resolution of the measured spec

trum, these researchers have developed many sophisticated techniques with 

the most advanced being maximum entropy spectral analysis. 

Maximum entropy spectral analysis (MEM) has stirred the interest of 

radio astronomers because its claims for better spectral resolution with 

limited amounts of data creates a promise of better sky brightness maps for 

radio sources. However, both the theory and application of MEM are not well-

developed and, consequently, this tool is not available to most researchers. 

Initially, the goal for this research was to develop the theory and prac

tical implementation of the maxiimm entropy spectral analysis method for 

estimating the power spectral density function when the autocorrelation 

data are Incomplete. As the research progressed it became apparent that 
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many problems and barriers existed between theory and application of spec

tral analysis. These problems were further investigated and it was con

cluded that a more general approach to spectral analysis should be taken. 

This approach led to a more user oriented thesis. Such topics as estima

tion theory, frequency domain analysis, system analysis techniques, sam

pling theory, and Fourier analysis were investigated. The selection of a 

method of spectral estimation as well as the mathematical behavior of the 

most common methods was developed. 

The author's original contributions are a collection of smaller topics 

scattered throughout the text. Chapter X, the Hilbert space vector for

mulation of digital Fourier transform analysis, is independent work that 

constitutes the mathematical framework used to develop the spectral mining 

formula discussed in Chapter XI. The discovery of a companion function to 

the time autocorrelation function is original work and is discussed in 

Chapter XV. The mathematical development of the calculus of variations 

technique used for this derivation was developed independently and is 

given in Chapter XXI, Part J. Much of the development of digital Fourier 

transform spectral estimation given in Chapter XII is unique to this text. 

The author's approach is one of analysis and interpretation while most 

published material concentrates on the computational details of the fast 

Fourier transform (FFT). The chapter on methods of spectral analysis is 

original work designed to aid researchers in selecting appropriate esti

mation techniques and to help in understanding the problems common to all 

spectral estimators. Although the topics of sampling theory presented in 

Chapter VI are not new, the presentation and derivations are specifically 



www.manaraa.com

3 

designed to relate the effects of sampling to spectral analysis. The dis

cussion of MEM is not original but the computer program and interpretation 

of results have not been previously published. 

Much work remains to be done in this research area. More theoretical 

study of MEM is needed to determine optimum series lengths and more effi

cient methods of spectral calculation. Data reduction schemes and better 

interpretation of estimated spectra need further research work. Probably 

the most needed future research is on the problem of unequally spaced data 

samples and under sampled data. 

Most of the mathematics and terminology used in the text are those 

commonly used in current publications in the spectral analysis area. One 

of the author's more fundamental contributions has been to unite the ter

minology used by geophysicists, statisticians, and electrical engineers to 

provide a common basis for communication. Where more than one terminology 

exists for a given concept, every effort has been made to define and use 

the varied terminology. The term time function is used to denote a contin

uous function of time that can be completely described in mathematical 

terms. A time series is a sampled or discrete time function and may be 

ideal or empirical. The term data function is used by the author to denote 

either a time function or time series that is being numerically processed. 

The author defines collective paramf»ters as those characteristics of a data 

function that are used to describe the process that generated the data. 

An asterisk is used to denote complex conjugation, a script F operator 

denotes Fourier transformation ( ̂Cx(t) } =X(u)) ), and convolution is abbre

viated by the product; y(t) =x(t)*h(t). 
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This research and resulting thesis are most directly suited for use by 

the researcher who mist do very serious spectral studies. The casual user 

is better served by applying readily available "canned" approaches to spec

tral analysis. This distinction and the possible alternatives available 

are discussed in Section D of Chapter IX. 

It will become apparent to the reader doing a detailed study of this 

work that the techniques of autoregressive spectral estimation, maximum 

entropy spectral estimation, and recursive digital filtering all have 

similar mathematical forms. They do share a common mathematical and 

theoretical basis but they produce different spectral estimates because 

they enq)loy different criteria-of-goodness and numerical algorithms. These 

similarities were useful in helping to better define the properties of 

these estimators. 

It must be emphasized that this work has a wide range of applicability. 

It is useful for any empirical work involving the Fourier transform or the 

autocorrelation function. The variables of time and frequency are used for 

convenience but others such as space and momentum are equally valid. All 

the methods of analysis presented involve some type of model fitting. In 

estimation theory, a truly "parameter free" method is not possible. The 

selection of a model is the most important task in spectral analysis. 

Chapter IX was written to help clarify the selection of a model and the 

conq)uting method. 
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II. TIME AND FREQUENCY CHARACTERIZATim OF TIME 
FUNCTIONS AND SERIES 

A time function or time series can always be specified by enumerating 

all possible function values in the time domain. For the continuous time 

function, this is done by representing the function by a mathematical equa

tion. For the discrete time series, the entire description can be given by 

an autoregressive equation or difference equation. This conçlete descrip

tion often involves mathematical completeness in the sense that the math

ematical representation is valid over the entire time domain and is well 

behaved. In many scientific applications, this couplete description is not 

necessary. Quite often it is sufficient to specify more collective param

eters such as average value, mean-square value, or power spectrum. Such 

collective descriptions often give valuable insight into the physical nature 

of the process which generated the observed data. For this reason it is 

desirable to discuss some of these collective characterizations. 

For theoretical purposes, a time function or time series can be con

sidered as being a sample function of a real process. This process can 

generate a time function which has both periodic components and random 

conçonents. Often a statistical description involving probability density 

functions and higher order moments is considered suitable. For most cir

cumstances, the observable in this system is some time function or series 

and it is the analysis of this time data that must be used to study the 

process. The definition of many of the collective parameters of a real proc

ess involve the use of statistical definitions. To be able to obtain these 

same parameters from time data it is usually necessary to assume that the 



www.manaraa.com

6 

process is ergodic. With this assumption it is possible to avoid the use 

of statistical descriptions of the process and obtain the collective pa

rameters directly from the time data. Most of the theory that is presented 

in this dissertation will be concerned with time functions that are sample 

functions of real ergodic processes. The use of probability descriptions 

will usually be limited to those that are necessary for a better theoret

ical understanding. None of the actual signal processing techniques will 

involve the direct use of any probabilistic descriptions. 

In the time domain, a data function can be characterized by its time 

average value, mean-square value, and variance. These collective parameters 

can be related to the statistical description of the function and yet do not 

require any transformations or use of statistical parameters. The time do

main analysis of a data function can also involve the computation of the 

time autocorrelation function (Appendix I, Part E). The time autocorrela

tion function is a measure of how well the function correlates with itself 

in time and also can be used to determine the mean-square value of the func

tion and detect any periodic con^onents of the process. 

In the frequency domain, a data function can be characterized by its 

amplitude spectrum or its power spectrum. The amplitude spectrum is ob

tained by taking the Fourier transform of the data function. The existence 

of an amplitude spectrum depends upon the existence of the Fourier trans

form. In many cases, the amplitude spectrum of a random process does not 

exist. The power spectral density function for a data function is obtained 

by taking the Fourier transform of the autocorrelation function. This def

inition is superior to the use of the amplitude spectrum because it elim
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inates the problem of existence. The power spectrum of a data function is 

often the desired physical information that is needed to solve a problem or 

verify some scientific hypothesis. For discrete data the power spectrum 

can be determined from the discrete form of the autocorrelation function or 

by using the autoregressive power spectrum. 

In theoretical discussions of the characterization of data functions, 

it is possible to give a mathematical formulation which describes the func

tion over the entire domain of the independent variable. When the data 

function is obtained from a physical process, the mathematical description 

becomes only an estimate for the "true" function. The various collective 

parameters which are used to characterize the data function are derived 

with the infinite domain assumption. Measured data can be described by 

collective parameters only when mathematical estimates of the entire data 

function are assumed. For example, a finite time series can be represented 

by a discrete Fourier series or by an autoregressive series. Both of these 

representations assume that the data function can be defined for all time. 

In Fourier analysis this is referred to as the periodic extension assimç)-

tion. 

Once a mathematical description of the data function is obtained, the 

various collective parameters such as average value, mean-square value and 

power spectirum can be calculated from the theory. As a consequence, these 

representations are only valid for the infinite domain assumption. It is 

important to realize that a concept such as power spectrum is totally de

pendent on the mathematical definition and is not related directly to a 

physical concept. The mathematical definitions for the various collective 

parameters are given in Chapter IV. 
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III. OBSERVABLES AND ESTIMATION THEORY 

The mathematical description of an area of physical theory such as 

quantum mechanics or spectral analysis often involves the use of transfor

mations into other domains. When working with this theory, it is iuçortant 

to realize that quantities defined in domains other than the time domain do 

not have a real physical significance and hence are not physical observ

ables. Quantities such as amplitude spectra or power spectra depend upon 

a mathematical definition for their existence. The definition is usually 

chosen so that it helps to give additional useful information about the 

physical process that is described by the function. As an example, for a 

periodic function, the amplitude spectrum obtained by taking the Fourier 

transform gives the complex amplitude coefficients of the Fourier series 

which describe the time behavior of the function. 

A time function can be defined for all time but a real observable can 

be defined only for a finite time. This causes problems with definitions 

vrfiich involve the use of infinite time functions. Transform domain func

tions such as amplitude and power spectra are defined only for functions 

which exist for all time. These definitions must be modified to accommodate 

the "finiteness" of a real observable. The modification is usually designed 

so that it gives a good approximation of the "true" value. Another approach 

is to use mathematical models to approximate the observed function with a 

mathematical function which is defined for all time. The study of how to 

formulate mathematical functions \^ich describe data that is obtained 

ençirically is called estimation theory. 
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The simplest forms of estimation theory are concerned with the selec

tion of an approximating function to "fit" a set of empirical data and the 

selection of a criterion to judge the "goodness" of that fit. A function 

or con^utational scheme that is used to describe some property of the empir

ical data is referred to as an estimator. Estimators can be as simple as a 

single sine function or as complicated as a digital Fourier transform. The 

three estimation processes most commonly used are those of signal filtering 

or smoothing, prediction or extrapolation, and interpolation. These pro

cesses are typically used in conjunction with a desired mathematical process 

such as numerical intergration or Fourier transformation. The estimation 

processes of smoothing, extrapolation, and interpolation are all useful in 

spectral analysis. 

Estimation theory is used to help solve the common problems of numer

ical integration, difference equations, and the representation of empirical 

data by exact functions. These methods are discussed in books on estima

tion theory and numerical analysis. A partial list of these methods would 

include for interpolation; Lagrange interpolation, Hermite interpolation, 

divided differences, Newton's forward and backward differences, Gaussian 

interpolation, Stirling's interpolation, and methods due to Bessel, 

Everett, and Steffenson, and for numerical integration; Riemann summation. 

Cote's formulas, Simpson's rule, Romberg's method. Filon's formula, Gauss-

Sidel method, Gauss-Laguerre method, Gauss-Hermite method, Chebyshev's 

formulas, and aid-of differences, and finally for curve-fitting of empir

ical data; least-squares polynomial, orthogonal polynomials, trigonometric 

functions (Fourier series), exponential functions, Chebyshev polynomials. 
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continued fractions, and rational functions. 

Why are there so many approximation methods? The reason is that es

timation theory cannot specify a unique method of estimation for every 

class of problem. All of the listed methods incorporate assumptions about 

the measured data that make that estimate optimum in some sense. For 

every criterion of goodness, a slightly different estimator can be deter

mined. 

Estimation methods often derive their name from the criterion used in 

their selection as "optimum". Such schemes as the method-of-least-squares, 

the method-of-moments, and the method-of-maximum-likelihood are often seen 

in the literature. Estimators can also be classified according to such 

characteristics as linearity, bias, sufficiency, efficiency, and asymptotic 

efficiency. 

The selection of an estimate as "best" is strictly a matter of user 

definition. Experience with the use of practical estimators has shown 

that certain criteria produce good results for a variety of tasks. One of 

the most popular criterion-of-goodness is to minimize the least-square 

error between data values and estimated values. The sum given in Equation 

3-1 is often referred to as the total mean-square error or "residue" of 

the estimate: 

1 N ^ 2 
mean-square error = r 2 (x - x ) (3-1) 

" n=l " 

The data set is represented by the x^ values and the estimations by the 

X values. 
n 
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Estimation theory is an important part of the theory of spectral 

analysis of empirical data because of the finite observations involved. 

Estimation theory can be applied to truncated functions to provide the 

"best" possible spectral estimate for a given amount of data. Criteria of 

goodness for spectral estimators are often not well-defined and an attempt 

will be made to discuss this problem for each of the various estimation 

schemes. 

A rigorous background in estimation theory is not necessary for the 

study of spectral analysis but it does help to clarify the goals of the 

various schemes and puts the selection of a particular scheme on a ration

al basis. For the reader who is interested in a good introductory text on 

estimation theory, the book by Deutsch (1965) is recommended. 
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IV. TIME AND FREQUENCY DOMA.IN ANALYSIS 

The time and frequency domain analysis of a time function or time 

series can be done on a theoretical basis or on an empirical basis. The 

theory for this analysis has been well worked out and is widely published 

in communication theory books and statistics books. The empirical analysis 

of a data function involves the use of estimation theory and criteria of 

goodness and is not well defined for the user. Empirical analysis also 

involves many subjective decisions and a priori assumptions about the 

process which generated the data. These factors make it easy for the 

observor to bias and influence the computed results. This has been espe

cially true in spectral analysis where the experimenter often must choose 

among several techniques which give dissimilar results. In this chapter 

we will attempt to summarize the theory and equations that are used to 

characterize a data function and make special emphasis on the differences 

between theoretical definitions and estimations. 

A, Theoretical Definitions 

A data function is completely described by an equation or recursive 

relation which specifies all values in the time domain. Although this com

plete description is adequate, it is often more meaningful to describe the 

data function by such collective parameters as average (mean or expected 

value) value, mean-square value, variance, autocorrelation function, am

plitude spectrum, and power spectrum. A discussion of the theoretical def

initions for these parameters will now be given. It will be assumed that 
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the data function is defined for all time and is well-behaved so that there 

are no mathematical problems with the definition. The theoretical defi

nitions will depend on a knowledge of the probability density function for 

the process and on the assumed ability to define the function over the 

entire domain of the independent variable. Most of the theory to be given 

can be applied to deterministic functions as well as random time functions. 

The discussion will ençhasize the random aspects of the data function but 

it will be assumed that the reader will see the analogy for deterministic 

functions. 

The expectation (or average) value for a random variable is defined 

as: 

This theoretical definition depends on a complete knowledge of the prob

ability density function p(x) and the existence of the integral. 

For a periodic function, the average value for one Fourier period is 

computed from the integral: 

The mean-square value for a random variable is defined as the second 

moment integral: 

xp(x)dx (4A.1) 

+T/2 
r x(t)dt 
-T/2 

(4A.2) 

X p(x)dx 
1 X  

(4A.3) 

For a periodic function, the mean-square value for one Fourier 

period is : 
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x^(t) J x^(t)dt 
-T/2 

(4A.4) 

The square root of this value is called the root-mean-square value of the 

periodic function. The mean-square value for a random variable or 

periodic time function is often called the "power" of the function because 

it is a measure of the second moment and is used to calculate the power 

in an electrical circuit. 

The variance of a random function is a measure of the variability of 

the values of the function. The variance is defined as: 

The variance is often referred to as the "ac power" in the function be

cause it is a measure of the variability after removal of the average or 

"dc" part. An equivalent definition for the periodic function could be 

developed but is rarely used. Quite often the average value is subtracted 

from the total function and a "zero average" function is defined. This is 

done explicitly in the definition of the variance. A good example of 

this approach is the use of a zero-mean autocorrelation to define a power 

spectrum. Blackman and Tukey (1958) use the term autocovariance for this 

zero-mean function. Other descriptive parameters such as higher order 

moments could be defined but these are not often used. This completes 

the discussion of time descriptions and we now go to the autocorrelation 

function. 

The time autocorrelation function for a data function is defined by 

the following multiplication and integration process: 

( X - E { X}) p(x)dx (4A.5) 
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1 J/2 
R (T) = lim — R x(t)x(t+T)dt (4A..6) 

X _T/2 

The autocorrelation function has two very inçortant uses. First, it can 

be used to describe the "coherence" of a function because it is a measure 

of how well the data function correlates with itself after a shift in time. 

The process of shift-multiply-average ençhasizes periodic features in the 

data function and is useful for determining any periodic structure in a 

data function which would normally appear to be stochastic in nature. 

Second, it is used to define the power spectrum of a stochastic process. 

The Wiener-Khinechine relations (Appendix I, Part F) define the power 

spectrum of a random function as the Fourier transform of its autocorrela

tion function. 

We refer to the autocorrelation function as the representation of the 

time function in the "autocorrelation domain." The domain variable T is 

called the lag time or singly the lag. The lag time is the amount of shift 

between the two functions. The autocorrelation function cannot be used to 

derive a unique time function because of the integration process. This 

means that the autocorrelation function is not unique with respect to the 

time function. For any given autocorrelation function, an infinite number 

of time functions could have been used to derive it. 

The frequency domain descriptions for a data function are limited to 

the amplitude spectral function, the power spectral density function, and 

the autoregressive spectral function. Other spectral representations such 

as using a filter transfer function are valuable for special applications 

but are really just special cases of the three general methods. 
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The amplitude spectral function is defined as the Fourier transform 

of the data function: 

-hco 

The amplitude spectrum will exist only when the Fourier transform exists. 

It is most applicable for periodic functions and single pulses in the time 

domain. It also forms the basis for discrete Fourier transform analysis of 

sampled data functions where the function is assumed periodic beyond the 

sampling interval. 

The power spectral density function is defined as the Fourier trans

form of the autocorrelation function. These two functions form a Fourier 

transform pair as given by the Wiener-Khinchine relations: 

In theory, a knowledge of either function implies a complete knowledge of 

the other. In empirical analysis, this assumption is rarely true because 

of finite data. Consequently, the various estimators and algorithms will 

have an inçortant effect on confuted results. It is the development of 

the theory describing these various estimators that is the primary goal of 

this research. 

(4A.7) 

(4A.8) 

(4A.9) 
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B. Estimations 

When working with empirical data, the data function is only an esti

mate of the "true" function and all collective parameters that are calcu

lated from the ençirical data set are estimated parameters. If the data 

set is large and the estimator is well chosen, the estimated parameters 

are very close to the true parameters. For theoretical reasons, and also 

for asthetic reasons, most estimators are chosen so that they are unbiased 

and converge to the true values as the amount of data becomes infinite. 

There are important cases where the estimate that is wsed does not converge 

to the theoretical value but still gives an acceptable estimate. This oc

curs often in commonly used techniques of spectral analysis. The estima

tors that will now be presented are widely used in the analysis of empiri

cal data. 

The average value for a time series or set of random variable values 

is estimated by the sum 

where the p^ are the discrete probabilities associated with each data 

sanç)le It is commonly assumed that all of the samples, are equally 

likely which means that the p^ are all equal. For N equally likely random 

samples of x, the average value is the simple arithematic average given by 

 ̂• N kîl'hc (43.2) 

where 
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For a periodic function, the average is estimated by the integral 

1 +T/2 
x(t) = - r x(t)dt (4B.3) 

-T/2 

where T is called the period of the average. Generally this period is not 

equal to the Fourier period because the Fourier period is unknown. The 

Riemann sum approximation for this integral is given by Equation 4B.2. 

The mean-square value for a discrete random variable is estimated by: 

"2 1 » 2 

P 
kîlVk (4B.4) 

k:l k 

When all N samples are equally likely, the mean-square value reduces to: 

~ 1 ^ 2 
X = - 2 x^ (4B.5) 

" k=l 

For a periodic function, the mean-square value is estimated by 

1 1 2 
X (t) = - r x (t)dt (4B.6) 

-T/2 

where, again, T is called the period of the average (or estimate). The 

Riemann sum approximation for this integral is given by Equation 4B.5-

The variance of a random function is estimated by using a weighted 

average summation approximation for Equation 4A.5. This estimate is: 

0^ = (x-x) = X - (x) (4B.7) 

When all saii^les are equally likely, (4B.7) is estimated by the sum: 
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The estimation procedures used for autocorrelation functions, auto-

covariance functions, amplitude spectra, power spectra, and autoregressive 

spectra are the most important aspects of spectral analysis and are the 

main themes of this dissertation. The procedure for selecting a particular 

estimation method and its application to empirical data will be discussed 

in Chapter IX. The details of the estimation algorithms will be presented 

in the appropriate later chapters. 
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V. SYSTEM ANALYSIS TECHNIQUES 

There are several important system theorems and mathematical tools 

used in spectral analysis. Many of these are associated with system 

analysis in electrical engineering and are also broadly applicable to many 

other physical systems. For conçleteness, and to familiarize the reader 

with many of the concepts to be used later, these analysis techniques will 

now be discussed. 

A. Convolution Theorem 

The time output response, y(t), of a physical system can be related 

to the time input, x(t), by convolving the system impulse response, h(t), 

with the input. A single system is shown in Figure 5A-1. For a linear. 

x(t) h(t) h(t) 'y(t) 

Figure 5A-1, A Simple Operating System for Illustrating Convolution 

time-invariant system, the convolution integral relating the input and out

put is written as: 

+0 
y(t) = J h(t - T)x(T)dT (5A.1) 

•00 

or in shorthand notation: 

y(t) =h(t)*x(t) (5A.2) 
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All functions are assumed to be defined for all time and h(t - T) is the 

impulse response of the system occurring at delay time, t = T. 

The induise response of a system is defined as the system output 

response when the input is a unit impulse (Dirac delta function). This 

can be shown by using the convolution integral of Equation 5A.1 and the 

sifting property of the Dirac delta function. 

The impulse response of a system can also be obtained by first com

puting the system transfer function, H(u)), and taking the inverse Fourier 

transform. It is important to realize that H(ui) and h(t) form a Fourier 

transform pair: — 

This relationship is frequently used in electrical engineering to help 

analyze and synthesize electrical networks and systems. It is often easier 

to synthesize an electrical network in the frequency domain and then use 

the inverse Fourier transform to determine its time response. These equa

tions all assume infinite time functions and do not take into effect the 

requirement of causality in the system. 

For h(t) to be causal (no output prior to there being an input), the 

impulse response must be zero prior to zero time; h(t) =0, t <0. Also, if 

the system is to be stable, the impulse response must be absolutely in-

tegrable (the response must die out as time goes on). The true limits of 

the convolution integral are actually the "overlap" of x(t) and h(t - T) .  

(5A.3) 
— CD 

(5A.4) 
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Only for the theoretical case where both exist for all delay time, T, do 

the limits become infinite. At a specific observation time, t = t^, the 

output will have a value corresponding to the value of the convolution 

integral: 

y(t^) = J h(t^ - T)x(T)dT (5A.5) 

A typical graphical interpretation of this convolution integral is shown 

in Figure 5A.-2. 

Figure 5A-2. A Typical Graphical Interpretation of Convolution 
Showing Limits of Integration 

For physically realizable systems with causal impulse response, the 

convolution integral is usually written as (Schwartz, 1970, p. 87): 

y(t) = J h(t - T)x(T)dT (5A.6) 

For both x(t) and h(t) causal, the convolution integral relating the 

system output with its causal input and causal impulse response becomes: 

y(t) = J h(t - T)x(T)dT 
0 

(5A.7> 
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This representation of the system response most closely represents the 

true circumstances when a signal x(t) is applied to a system h(t). The 

system output, y(t), can be interpreted as a superposition of past values 

of X(T) weighted by the system inpulse response, h(T). A widely used 

graphical interpretation for the convolution of two causal functions is 

given in Figure 5A-3. The inçulse response h(t - T) represents the true 

system response after it has been "folded over" and extended into past 

time. The system response, y(t), at observation time t, is the input 

function, X(T), from T=0 to T= t weighted by the "folded over" impulse 

response, h(t - T).  

The convolution integral of Equation 5A.7 is used in linear systems 

analysis to develop the Laplace transform method of solving system re

sponses (Cheng, 1959, p 227). If x(t) and h(t) are both Laplace trans

formable, the Laplace transform of the output is equal to the product of 

the Laplace transforms of x(t) and h(t): 

Y(s) = X(s)H(s) (5A.8) 

This important result is called the convolution theorem. 

The convolution of finite time signals or periodic time functions 

with a causal system can be analyzed using the concepts of the amplitude 

transform, both Fourier and Laplace, but the analysis of the response of 

a system to a random time function must be done using autocorrelation 

functions and power spectra. This theory will now be summarized. 
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x(t) 

t 0 

a) Causal input function 

h(t) 

b) Causal filter response 

X(T) 
h(t - T) ̂  

future past 

present 

c) Convolution for causal functions 

Figure 5A-3. Graphical Interpretation for the Convolution of 
Two Causal Functions 
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B. System Response to Random Time Inputs 

A linear, time-invariant system, h(t), operating on a sample time 

function of a random process, x(t), defines a new sample function, y(t), 

that is related to the "old" function and the system inçulse response by 

the following convolution integral: 

This integral is equivalent to that given in Equation 5A.1 and we see that 

the concept of convolution is valid even for random inputs. This alternate 

form of the convolution integral was chosen to make the following deriva

tions simpler. This result is very important because it will facilitate 

the derivation of ingortant relationships between the input and output 

sample functions. 

If we assume the input process is both stationary and ergodic, the 

time autocorrelation function can be used to determine the power spectra 

of input and output. The time autocorrelation function for the output is 

defined as: 

The output at time t and at time (t+T) can be written in terms of the 

convolution integral of Equation 5B.1 as 

y(t) = J h(u)x(t-u)du (5B.1) 

1 
R (T) = lim - J y(t)y(t+T)dt 
y T-»» -T/2 

(5B.2) 

y(t) = J h(u)x(t-u)du (5B.3) 

(5B.4) 
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where u and v are dunmy variables of integration. If these relationships 

are substituted into Equation 5B.2., and the time average of the product 

x(t - u)x(t+T-v) is identified as the autocorrelation function of the in

put with argument (T-V+U), the autocorrelation of the output can be 

written in terms of the system impulse response and the autocorrelation of 

the input as (Carlson, 1968, p. 80): 

+eo -Ha 

R (T) = J J h(u)h(v)R (T-v + u)dvdu (5B.5) 
y —CO -co 

Equation 5B.5 is an important intermediate result because it expresses the 

relationship between the input and output autocorrelation functions. It 

can be thought of as the autocorrelation domain equivalent of the time 

domain convolution integral of Equation 5B.1. 

To obtain the power spectral density function for both the input and 

output processes, we take the Fourier transform of both sides of Equation 

5B.5. The resulting triple integral can be separated by rearranging the 

exponential of the transform to give an argument equal to the argument of 

the input autocorrelation function (Carlson, 1968, p. 81). This gives: 

^CR (T)} = J h(u)e''"̂ '"̂ du [ h(v)e"̂ d̂v J R̂ (T - v+u)e"^'^^'^ 

^ (5B.6) 

The last integral is the Fourier transform of the input vrfiile the first two 

are the Fourier and inverse Fourier transforms of the inçulse response. 

These transforms can be written in abbreviated form as: 

^tRy(T)} =_/"^{h(u)}^h(v)}j?tR^(T)} (5B.7) 

Using the Wiener-Khinchine relations and recognizing that the product of 
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the two transforms of h(t) is equal to the absolute value squared of the 

Fourier transform, we obtain the important relationship between input and 

output power spectra: 

Equation 5B.8 is widely used in the analysis of linear systems and their 

response to random inputs (Thomas, 1969, p. 145). It clearly illustrates 

the effect of a linear filter on the spectrum of an input function. It is 

also used to determine filter shape for optimum design and spectral 

shaping. This relationship is also used in prewhitening and in the design 

of a linear predictive filter as needed in maximum entropy spectral 

analysis. 

Digital convolution can be performed with two discrete functions by 

adapting the convolution integral for causal functions as given in Equa

tion 3À.7. Since digital operations involve finite input data sets and 

digital filters of finite length, the convolution and filtering operations 

can always be thought of as involving causal functions. Approximating the 

continuous convolution integral with a Riemann sum gives 

S (ui) = 1H(U)) i^S (ID) 
y X 

(5B.8) 

C. Digital Convolution 

t 
(SC.I) 

where: 

t = the output or observation time index. 

At = the sangling interval. 
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The correspondence between discrete and continuous variables is given 

below: 

y(t) : y(tAt) = 

h(t - T) : h(tAt-kûT) = h^-k (5C.2) 

X(T) : x(kAT) = X^ 

An example for a digital filter of length five and a time series of length 

six will now be given. Figure 5C-1 illustrates a graphical interpretation 

of digital convolution. The outputs for the exançle are: 

yo = AtCh^Xg) 

yi = ûtCh^XP + h^x^) 

Yg = AtCh^Xg + hj^x^ + h^x^) 

y2 = Atch^x^ + h^xj^ + hj^x^ + h^x^) 

= 6t(h^XQ 4- h^x^ + hgXg + h^Xg + hgX^) 

y^ = 6t(h^x^ + h^x^ + h^x^ + h^x^ + h^x^) 

^6 " At(h^X2+h3X3 + h2X^ + h^x^ + hQXg) 

y J = AtCh^x^ + h^x^ + h^x^ + h^Xg) 

yg = At(h^x^ + h^x^ + hgXg) 

y g = AtCh^x^ + h^Xg) 

yiO = At(h^xg) 

These outputs represent the numerical computation of the digital outputs 

for observation times starting at zero and ending at lOAt. The outputs y^ 

through y^ represent the transient response of the filter to the input, y^ 

through y^ represent the steady-state output, and y^ through y^^ represent 

the "ringing down" of the filter. 
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x(t) 

H h-

h(t) 

t 0 1 2 3 4 

t-k 

T 0 1 2 3 4 6 5 

Figure 5C-1. Graphical Interpretation for the Digital Convolution 
of a Time Series and a Digital Filter Showing the 
Output Conditions at 
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Digital convolution or filtering can also be thought of as the 

weighted superposition of past values of X(T). As time goes forward, the 

past values are represented by smaller values of t. If this weighting is 

represented by coefficients a^, a^^, a^, ... a^, the convolution can be 

written as: 

The digital convolution concept does not depend upon having a filter 

with as many coefficients, a^, as there are data values, x^. As a general 

rule, the filter is of length M and the time series is of length N. It is 

desirable to have N much larger than M so that filter transient response 

will be minimized. 

The most commonly used formulation for digital convolution is given 

by Equation 5C.4: 

The ranges on the indices are 

t = 0, 1, 2, 3, 4, ... (N + M) 

k = 0, 1, 2, 3, 4, ...M 

and the values for x with indices less than zero are assumed to be zero 

(causality). The response of the filter and the resulting output can be 

separated into three distinct observation time intervals: 
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1. for Ost^(M-l) is the transient response of the filter near 

the starting time. 

2. y^ for M^t^N is the steady-state response. 

3. y^ for (N+1) ̂t ̂  (N + M) is the "ringing down" or decay response 

after removal of the input. 

Digital filtering and convolution can also be formulated with matrices. 

This procedure is straight forward if one uses Equation 5C.4. 

D. Digital Deconvolution 

A general method for solving the convolution integral and obtaining 

a unique solution does not exist. In special cases, the convolution 

integral can be solved but the required boundary conditions and class of 

functions are such that these special circumstances do not apply to most 

practical cases. For discrete data and digital filters, deconvolution is 

really a matter of definition and is an "unraveling" of the weighting 

applied by the filter coefficients. For most cases, digital deconvolution 

can be performed using the following method. 

Digital convolution was represented by Equation 5C.1. If the y's are 

measured and the h's are known, it is possible to use the set of (N+M+1) 

equations defined by (5C.1) to solve for the x*s. This can be done re

cursively by solving the following system of equations: 

1 1 "-1 
= -SR "N - R JO VK'HC (5D.1) 

These recursive equations can also be expressed exclusively in terms 

of the y's. When this is done, the resulting set of equations can be 
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thought of as a deconvolution filter with weights, . The "deconvolution" 

using this special filter is obtained from: 

=== = FE KL WK (5D.2) 

The b's or filter weights are obtained from the a's of the original filter 

by using the following recursive formulas: 

»l - - "n 1 SQ 0 (5D.3) 
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VI. SAMPLING THEORY AND SAMPLED DATA FUNCTIONS 

In the usual sense, sampling theory is applied to sampled data systems 

in communication theory. In this application the user must consider such 

aspects as digital data transmission and reconstruction. The parameters of 

the system are usually under the control of the designer and can be opti

mized to suit a particular need. The signal is usually sampled at a rate 

well above the Nyquist rate and is sançled long enough to give any desired 

accuracy for the reconstruction. 

Sançling theory as applied to spectral analysis must be approached 

from a somewhat different viewpoint. First of all, the parameters of the 

transmitting system are not under the control of the experimenter. The 

"received signal" is usually a data function generated by some physical 

process that is being investigated. Since the nature of the received sig

nal is being investigated for its unknown spectral properties, it is dif

ficult to determine what sampling rate is necessary. Also, the amount of 

data needed to resolve an unknown spectrum cannot be determined in advance. 

The experimenter must solve this problem in an iterative manner by making 

reasonable assumptions about the spectrum to be measured. The sançling 

technique can then be studied to see if these assumptions are valid. A 

widely used technique for spectral analysis of an unknown spectrum involves 

the use of prefiltering to limit the spectral input to the sampler. This 

method is most successful if the sampling system can be adjusted to produce 

a range of filtered spectrums and sampling rates. As can be seen from the 

theory that will be discussed, the prefiltering method will produce an ac

curate estimate of the input spectrum that is within the filter passband. 



www.manaraa.com

34 

A time function or time series generated by a real physical process 

can be generally represented in the frequency domain by a spectrum con

taining both continuous and line components. Because of the "uncertainty 

principle" between time and frequency, this function is theoretically 

limited in spectral bandwidth by the physical process of measurement. 

Drawing on an analogy from quantum mechanics, the process of observation 

will introduce a perturbation which limits the observed spectral bandwidth. 

Even if the process has an infinite bandwidth, any measurement of a data 

function would involve the convolution of that function with a "filter" 

inside the measuring system. 

Because of this effect, every data function or set of empirical data 

will be bandlimited. To assure the user that the signal input to the 

sançler is bandlimited, it is wise to use the method of prefiltering. 

The method of data sampling can have a profound effect on an empirically 

derived power spectrum. The conditions of sampling such as sampling rate 

and number of samples are important parameters to be analyzed. The sam

pling technique is such a fundamental part of the measurement of a power 

spectrum that it is difficult to separate its effects from the actual 

power spectrum estimation technique. 

The basic concepts of sanq)ling theory as applied to spectral analysis 

will be discussed in this chapter. It will not be possible to discuss all 

aspects of this broad topic but the most important ideas will be covered. 

Specific applications of sampling theory to the various aspects of spectral 

estimation will be presented in appropriate later chapters. 
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A. Sampling Theory - Basic Definitions 

The important parameters of a sampling system are the spectral band

width of the data function to be sampled, the sampling rate, the pulse 

shape of the sampling function, the output filtering for the sampler, and 

the amount of data measured. Figure 6B-1 shows a block diagram of a sam

pling system that will be used for the system analysis of the sampler. It 

is assumed that prefiltering has already been applied to the data function 

and that post-sançling reconstruction or filtering will be applied at a 

later stage. For purposes of discussion it will be assumed that the proc

ess being examined produces a continuous time function. 

The time function to be measured, x(t), is called the sampled function. 

It is assumed to be continuous, bandlimited, and defined for all time. 

The spectral bandwidth of x(t) will be assumed to be limited to 2(u, . The 
D 

output of the sang) 1er is denoted by y(t) and is obtained by multiplying the 

sampled function, x(t), by the sampling function, m(t). m(t) is charac

terized by a repetitive pulse shape, p(t), and is a periodic function that 

can be represented by a Fourier series. The sampling system can also be 

modeled by the convolution of a Dirac comb function and a single pulse, 

p(t), which represents the basic pulse shape of the sampler. The system is 

modeled with system blocks such as multiplication and convolution so that 

the system analysis techniques given in Chapter V can be used in the de

rivations . 

The inçortant relationship between the sampling rate (or frequency) 

and the Nyquist sampling rate (or frequency) can be discussed with the help 

of Figure 6A-1. The Nyquist frequency depends upon the spectral content of 
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b) Sançling frequency equal to the Nyquist frequency. 
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c) Sançlxng at less than the Nyquist frequency (undersanç>ling), 

Figure 6A-1. Output Spectra for an Ideal Sançler Showing the Effects of 
Sampling Rate and Aliasing 
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the signal being sampled and is defined to be twice the highest frequency 

for which a nonzero spectral component of x(t) exists (Schwartz, 1970, 

p. 119). For the present discussion, the spectral components in x(t) will 

be limited to frequencies less than f^ so the Nyquist frequency is ^ = 2f^. 

The time interval between samples, , is called the Nyquist sampling 
b 

interval. 

The sampler is characterized by the sampling frequency, sampling in

terval, and folding frequency. The time interval between samples (sampling 

interval) is T^ and the sampling frequency is defined as the reciprocal of 

the sampling interval, f =^. In this dissertation, the folding frequency 

' ̂ 1 
will be defined to be one-half of the sampling frequency, ^£"'2^3* The 

folding frequency is a characteristic of the sampler and is the highest 

frequency that can be sampled without aliasing effects. This definition 

and concept is inçortant to the discussion of the theory of sançling. 

Other authors appear to define it in a different manner (Blackman and Tukey, 

1958, p. 32). 

If a signal is sampled at exactly the Nyquist rate, the Nyquist fre

quency and the sampling frequency will be equal and the folding frequency 

and the frequency of highest spectral content will be equal. This condi

tion is often used as an example in discussions of sampling but does not 

illustrate the important differences between the characteristics of the 

sampled signal and the characteristics of the sampling device. 

The s angling rate can have a drastic effect on the spectral output of 

the sandier. The sangling rate must be greater than the Nyquist rate 

or serious spectral distortion will occur. From the viewpoint of the 
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sany ling device, this is equivalent to saying that the input signal cannot 

have any spectral components above the folding frequency or aliasing will 

occur. This phenomenon, which is called aliasing, is illustrated in 

Figure 6A-1. The input spectrum to the sampler is assumed to be triangu

lar. Figure 6A-la shows the spectrum of the output, y(t), when the sam

pling frequency is greater than the Nyquist frequency of the input. Figure 

6A-lb shows the output spectrum when the sampling frequency is equal to the 

Nyquist frequency and Figure 6A-lc shows the aliasing effect ;rfien the sam

pling frequency is less than the Nyquist frequency. Sampling at a rate 

that is less than the Nyquist sampling rate causes the output spectra to 

overlap. This overlap or "folding back" of the spectra creates erroneous 

spectral components or "aliasing" of the true spectrum. It is important to 

note that not all of the spectral information is rendered useless by alias

ing. The spectral components below a frequency of (f^- f^) remain unaf

fected. 

Figures 6B-2 and 6B-3 represent the sampling system in both the time 

and frequency domains. Both representations are used because both provide 

useful system information. The solution for the output spectrum of the 

sampler will be obtained by solving the convolution interals by means of 

the Fourier transform. 

The sampling function, m(t), can be represented as the convolution of 

the pulse shape of the sampler with a Dirac comb function (See Equation 

B. Sampling Theory - The System Equations 

6C.2): 

m(t) = J p(T)Coinb(t - T)d 
— CD 

(6B.1) 
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The sampling function is even and periodic so it can be represented by an 

even Fourier series 

X OS 2 I ® 
m(t) = - C + E C cos t) = Z p(t - nT ) (65.2) 

z o n=i n ig n=_« ^ 

where C^/Z is the average value and is the sampling rate. 

The output of the sançler is obtained by multiplying the sampling 

function, m(t), and the sampled function, x(t). The resulting output can 

be' written in two ways : 

+os 

y(t) = x(t)m(t) = x(t) S p( t - r i r  ) (6B.3) 
n=-oo s 

In the frequency domain, the convolution integral representing m(t) is re

placed by multiplication of the Fourier transforms of p(t) and Comb(t) 

M(uj) = P(tii)Comb(u)) (6B.4) 

\diere: 

M(uii) =,^[m(t)} 

P(CI)) =^7^CP(T)} 

Comb( uu) = _^^Comb(t) } 

Also in the frequency domain, the multiplication of x(t) and m(t) is 

replaced by the convolution of their respective Fourier transforms: 

. +00 

Y(ui) = ^ J X(X)M((D- \)dX (6B.5) 
-CD 

These system equations describe the operation of the sampler and will now 

be used to derive equations for the output frequency spectrum and the re

constructed signal. 
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C. Output Frequency Spectrum 

The output frequency spectrum of the sampler can be obtained by 

making use of the special properties of the Dirac comb function or by 

expressing the sampling function as a Fourier series. Each method will 

now be briefly presented. 

The reason for expressing the periodic sampling function, m(t), as the 

convolution of a single pulse, p(t), and a Dirac comb function is that the 

spectrum of m(t) can be expressed as the product of the spectrum of p(t) 

and the spectrum of Comb(t). Since the spectrum of a Dirac comb function 

is another Dirac comb function, the convolution integral of Equation 6B.5 

is easily solved by using the sifting property of delta functions. First, 

the amplitude spectral density function for m(t) is: 

M(ai) = P(u;)Comb(tii) (6C.1) 

The Dirac comb function is written in the time domain as: 

+œ 
Comb(t) 6(t - nTg) (6C.2) 

The Fourier transform of the Dirac comb function is itself a Dirac comb 

function (Reference Data for Radio Engineers, 1968, p. 42-2): 

^{Comb(t)} = Comb(ui) = ̂  ̂  6((ju-n^) (6C.3) 
^s n=-œ 

Since the output spectral function is obtained from the convolution 

of M(uu) and X(uj), we can write Y(w) as 

1 
Y(uJ = 2^ J X(X)P((D- X)Comb(uj- X)d\ (6C.4) 
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where M(u;-X) = P(uu-X)Conib(u)-X) . Explicitly writing out the series for 

the Dirac comb function and replacing ̂  with uu , the convolution integral 
^s ® 

of Equation 6C.4 becomes: 

1 ^ += 
Y(uj) = "^ J [x(X)p(m-X) U) Z 6( W- X - nuL) ]dX (6C.5) 

®n=-œ S 

Equation 6C.5 is reduced by cancelling common factors and inter

changing summation and integration to give: 

1 ^ 
Y(u)) = — T. r X(X)P(uu-X)6(uu-X - nuu )dX (6C.6) 

^s n=-= s 

The integral can be eliminated by making use of the sifting property 

(Appendix II, Part E) of the Dirac delta function. Using the sifting 

property for Equation 6C.6, the convolution integral becomes 

+00 

J X(X)P(uo- X)6(X - uu+nujg)dX = X(uu- nu^)P(na;g) (6C.7) 
-00 

and the output spectrum for the sampler can be written as: 

Y(uj) = ̂  E P(ntiL)X(u)-nuu ) (6C.8) 
n=-co 

The term P(ntiy) represents the Fourier transform of the sampling pulse, 

p(t), as it is periodically sampled at values ncu^ in the frequency domain. 

Since this amplitude function is a constant with respect to the frequency 

variable, lu, and is only dependent on the sampling frequency uUg, it can be 

replaced by a real coefficient defined by: 

Pn (^'9) 
s 

The output spectrum can now be represented by the infinite series 
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4oo 
Y(uu) PjX(u)-niUg) (6C.10) 

with constant coefficients and a periodic repetition of the aiiq)litude 

spectrum of the sampled data function, x(t). Before interpreting the 

meaning of the output spectrum, the alternate derivation using the Fourier 

series representation for the sançling function, m(t), will be given. 

The sampling function is represented by the Fourier series of Equation 

6B.2. The Fourier transform of this series given by 

M(uj) = TTC 6(ai) + S C TT [6(nuu - tx)) + 6(ntt) + œ) ] (6C.11) 
° n=l II s s 

is used in the convolution integral for the output spectrum given by Equa

tion 6B.5. The Fourier transform for m(t) is substituted into (6B.5) and 

integration and summation are interchanged to give the integrals: 

1 
Y(œ) J X(X)6(X- ui)dX 

-00 

00 +® 

+ 7 Z C r X(X)[6(X - U)+nuLi ) + 6(X - uu-nu) )]d\ (6C.12) 
^ n=l "loo 

The sifting property of the Dirac delta functions is used to eliminate the 

integrals and give an output spectrum of: 

1 ^ 1 ® 
Y(ui) =-r C X(uj) + EC X(m- nuu ) 4- — Z C X(u)- nm ) (6C.13) 

n=-co s f n=l ^ s 

The first term represents the original spectral function centered about 

zero frequency and amplitude scaled by a factor of 0^/2. The second term 

is the series of all the negative frequency spectral terms and the third 

series represents all of the positive spectral terms. If these series are 

identified term by term with the previous result given by Equation 6C.10 we 
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see that the coefficients are related as: 

Po = Co/2 

Pn = 

Cq = |- P(nuug) (6C.14) 
s 

The function P(nuy) is even so the coefficients, or C^, form an even 

array (p = p or C = C ). 
n -n n -n 

A simple example will now be given to illustrate the application of 

the derived equations. Consider a sampler whose sampling function consists 

of a pulse train of narrow rectangular pulses as illustrated by Figure 6C-1. 

The ançlitude spectrum of x(t) will assume the arbitrary but bandlimited 

form shown in the figure. The amplitude spectrum of a single pulse of m(t) 

is given by the Fourier transform of a narrow rectangular pulse: 

^{p(t)} = J 2 Ae^ ̂ dt = ~ sin(-^ ui) (6C.15) 

EÉ. 
2 

This equation can be written with a sine function: 

AT, 

P(U3) = AATg 
sin(-̂  U3) 

ATS 
— w 

(6C.16) 

The pulse height of the sampler. A, is called the gain of the sampler and 

^Tg is the pulse width. The product A^T^ is the area under the rectangular 

pulse. For purposes of analysis, the pulse area is often set equal to 

unity. The spectrum of p(t), sampled at intervals corresponding to nuy, 

is used to obtain the coefficients, p^. These coefficients are calculated 



www.manaraa.com

46 

from: 

AT 

P(nu)g) = A ATg 

. / s , 
sin(—J— nuu ) 

~s " 

1_ — _ 

(6C.17) 

The output spectrum for the rectangular sampler can be calculated from 

Equation 6C.10 and the corresponding amplitude coefficients from (6C.17) 

and (6C.9). The output spectrum for the rectangular pulse example is shown 

in Figure 6C-2. 

As the pulse width of the rectangular pulse is made narrower, and the 

pulse height increased so that the pulse area remains constant, the rec

tangle function approaches a delta function. If the sampling function, 

m(t) , is a Dirac comb function, the amplitude spectrum of a single delta 

function is a constant and the output spectrum simply becomes 

AT += 
Y(u) = A S X(uj-ntu ) (6C.18) 

s n=-<o 

because all the p coefficients are equal. The original spectrum is repro-

ATg 
duced periodically with an amplitude scaling factor of A ——. This type of 

s 
sampler is called an ideal sampler. The sançler that directly multiplies 

the incoming signal by a rectangular pulse shape is called a "natural" 

sampler, an exact-scanning sanpler, or a multiplying sampler. When the 

data function or input signal is sampled with a sançle-and-hold circuit, it 

is referred to as square-topped sampling. A similar analysis of the square-

topped sanqiler yields an output spectrum which is given by: 

1 
Y(ui) = =— P(tli) Z X(cu-nuj) (6C.19) 

s n=-= 
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Y(ui) 

P(0)x(uD 
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with a Rectangular Ifeiltiplying Function 
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This spectrum differs from that of the exact-s canning spectrum in that the 

Fourier transform of the sampling pulse is now an explicit function of the 

frequency, uu. This can be interpreted as a weighting function on the 

periodic spectrum that tends to low pass filter the spectrum that would 

be produced by an ideal sampler. If m(t) is a rectangle function, the 

weighting function will be a sine function. This effect may or may not be 

desired and certainly must be taken into account if a sample-and-hold 

circuit is used. 

From the general theory of sanipling that has been presented it is 

possible to summarize some of the important features of a sampling system. 

The ideal or Dirac comb type of sampler produces a periodic output spectrum 

which has a fundamental shape corresponding to the spectrum of the input 

signal. This type of output is illustrated in Figure 6A-1. The effect of 

a finite linear sampling time in a multiplying sanç)ler is to introduce a 

scale factor of P(nu^) into the periodic spectrum of X(uu- nuy). This 

factor is not a function of frequency but its effect is to scale the ampli

tude of each term in the series. The shape of the pulse in this type of 

sançler does not affect the spectral shape of the baseband spectrum or any 

of the higher order spectra in the series. It does, however, affect the 

amplitude factor for each term. The sançle-and-hold type of sampler, on 

the other hand, actually changes the spectral shape of the sampled input 

spectrum. This effect is easily accounted for by determining the Fourier 

transform of p(t). The output spectrum of a sampler is not a physical ob

servable and is usually processed by lowpass filtering to reproduce the 

original input signal. This filtering process is called reconstruction. 
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D. Data Function Reconstruction 

The input data function can be reconstructed at the output of the 

sampler by lowpass filtering the output spectrum. This is equivalent to 

convolving the output time function, y(t), with the inçulse response, h(t) 

of the lowpass filter. The reconstructed signal is represented by an esti

mate of the original input, x(t). The reconstructed output is given by the 

convolution integral: 

A 
x(t) = J h(T)y(t-T)dT (6D.1) 

-CO 

In the frequency domain, this filtering is represented by the multipli

cation of the output spectrum with the amplitude frequency response of the 

filter (Equation 6C.8): 

2^(ui) = H(jai)Y(ui) = H(juj) Z P(nai )X(UJ-ncu ) (6D.2) 
J-g n=-« ® ® 

The convolution integral can also be written in tenns of the original 

input signal and the sampling function as: 

A 
x(t) = J* h(T)x(t- T)m(t - T)dT (6D.3) 

-CO 

The solution for the output estimate, x(t), is now obtained by solving 

these system equations. 

The convolution integral of Equation 6D.3 can be solved for the ideal 

sang) 1er by replacing m(t) with a Dirac comb function and using the sifting 

property of the Dirac delta function as was done in Equation 6C.7. For the 

ideal sampler, the estimated output in the time domain becomes: 
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x(t) = Z x(nT )h(t-nT ) 
R>=^ED S S 11=-® 

(6D.4) 

This equation has an interesting mathematical form that is worth discussing 

because it gives insight into the sampling and reconstruction process. 

This series for the estimated function, x(t), uses a vector basis set which 

is derived from the impulse response of the lowpass filter. The ançlitude 

coefficients are simply the data samples at times, nT^. It is significant 

to realize that any bandlimited signal, x(t), can be represented by an in

finite series with amplitude coefficients corresponding to the samples of 

x(t) at times nT^ and basis vectors corresponding to the inçulse response 

of an arbitrary lowpass filter. The only requirement on the reconstruction 

filter is that it completely removes the higher order spectral components 

of y(t). This requirement is satisfied if the transfer function for h(t) 

is zero for frequencies above u^. 

A commonly used example for a lowpass filter that is frequently seen 

in textbooks is that of the ideal rectangular lowpass filter. The impulse 

response of this type of filter is obtained by taking the Fourier trans

form of a rectangle function with height and "double-sided" spectral 

bandwidth 2ui . This transform is the well-known sine function and can be 

This impulse response is used in the series of Equation 6D.4 to give the 

well known result 

written as: 

(6D.5) 

x(t) = 2N f, ^ x(nT ) 
O D s s^ 2TTf^(t-nTg) 

sin 2-n f^(t - nT^) 
(6D.6) 
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where is the "single-sided" spectral bandwidth, in Hz, of the lowpass 

filter. 

In most cases, the results obtained for the ideal sampler can be di

rectly applied to "exact-scanning" and "flat-topped" sançlers. Usually 

only the amplitude factor is affected. For exact-scanning, the estimated 

output spectrum is obtained by lowpass filtering the spectrum given by 

Equation 6D.2: 

X(uj) = ̂  P(0)H(UJ)X(UJ) luuj^u^ (60.7) 

The inverse Fourier transform is taken to give the output in the time do

main. The resulting equation will be the convolution of the impulse re

sponse of the filter and the input signal. The final result is given by 

Equation 6D.4 and the addition of a scaling factor to account for the 

finite gain of the sampler: 

x(t) = S x(nl )h(t-nT ) (6D.8) 
n=-® s s 

P(0) is the Fourier transform of the pulse shape of the sampling function 

evaluated at zero frequency. For the previous example of a rectangle 

function, this factor is, P(0) = A^T^. 

The flat-topped sampler introduces an additional conçlicating factor 

because the output power spectrum after lowpass filtering still contains 

the weighting function P(ui). This result is shown by filtering the spec

trum given by Equation 6C.19 with a lowpass filter to give the estimated 

output spectrum as: 

X(uu) = H(uu)Y(ui) = ̂  H(uj)P((«)X(ui) |uj|^u^ (6D.9) 
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The solution in the time domain involves two convolution integrals and can

not be solved in general. If the width of the sampling pulse is suffi

ciently small so that P(ID) is essentially a constant over the frequency 

interval 0 to ci^, the output in the time domain will be the same as that 

given by Equation 6D.8. This approximation is valid for most practical 

samplers. 

It is of practical interest to compute the spectral output of the low-

pass filter by taking the Fourier transform of the estimated output given 

by Equation 6D-8. Since the only time dependent tenn in the equation is 

the time shifted impulse response, the Fourier transform is simply the in

finite series composed of the Fourier transform of h(t) and the shifting 

theorem phase factor: 

The infinite series part of (6D.10) is exactly the form of a digital 

Fourier series with infinite sampling. This important result shows how 

the continuous spectrum given by Equation 6D.7 can be obtained from the 

lowpass filter spectrum and the discrete samples of x(t). Both of these 

quantities are known in a practical s angling system. 

If the lowpass filter has a rectangular passband, its ançlitude spec

tral function, H(uj), will be a constant over the spectrum of x(t) and the 

output spectrum, X(u)), can be confuted, within a scale factor, by a digital 

Fourier series with infinite sampling. 
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E. Sampling Theory - Finite Record Lengths 

In practical sangling situations, the length of the input data 

function is either limited in time or else the data can be observed for 

only a finite time. This situation can be adequately modeled by using a 

sampling function which exists only over a finite time interval. For a 

total of 2N+1 observations of the input signal, the sampling function is 

defined as: 

+® 4# 
m(t) = r P ( T) s 6(t - T - nT )dT (6E.1) 

_œ n=-N ® 

or in terms of the periodic pulse train as: 

4N 
m(t) = S p(t-nT ) (6E.2) 

n=-N ® 

The sampling function is periodic only over the interval of the defined 

pulses. In effect, the sampling function has been multiplied by a rec

tangular window function of width (2N+l)Tg. This forces the amplitude 

spectrum of m(t) to be infinite and continuous. This effect does not 

cause a problem with the analysis of the system but does force the ob

server to accept, at best, only an estimate of the "true" input spectrum. 

The amplitude spectrum of the sampling function can be obtained by 

taking the Fourier transform of the finite pulse train of Equation 6E.2. 

The transform is simply the transform of the pulse, p(t), with a phase 

factor determined by the shifting theorem. This result may be written as: 

M((d) = P(uj) E (6E.3) 
n=-N 

If m(t) is modeled by an infinite pulse train multiplied by a window 
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function, the resulting amplitude spectrum is obtained by convolving the 

amplitude spectrum of the window function with the ançlitude spectrum of 

the infinite series. The infinite series can bé written as a Fourier series 

so its Fourier transform has already been given by Equation 6C.11. The 

Fourier transform of a window function of unity amplitude and width 

(2N + l)Tg is the same as that for a rectangular pulse. This transform is 

given in Equation 6C.16 where A = 1 and ATg = (2N+l)Tg. The convolution 

integral can be solved by using the sifting property of the Dirac delta 

function to give: 

-Ho 
M(uj) = (^|i^)T f C 

sin(-^y^)T (uu- nu) ) 
(6E.4) 

The amplitude coefficients, C^, are determined from the amplitude spectrum 

of the pulse shape as given in Equation 6C.14. When this substitution is 

made into (6E.4), the desired alternate form for the spectrum of the mul

tiplying function is obtained as: 

-H= 
M(ai) = (2N + 1) S P(nm ) 

n=-oo 

sin(—^—)Tg(uj- niDg) 
(6E.5) 

Equations 6E.3 and 6E.5 represent two equivalent series representations 

for the amplitude spectrum of m(t). Both of these representations have 

their usefulness in certain applications and insight into the properties 

of the sampling function can be obtained from both. The sampler output 

spectrum will now be computed using the representation of (6E.3). The out

put spectrum of the sampler, before filtering, is a series of 2N + 1 func

tions obtained by convolving the spectrum of x(t) with the spectrum of p(t) 
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and a multiplicative phase factor: 

Y(au) = ^ ̂ r (6E.6) 
n=-N loo 

If the sampler is ideal, the Fourier transform of the sampling pulse 

will be a constant and the convolution integral for the output spectrum 

of (6E.6) will be reduced to: 

Y(uu) = j- J x(X)e"^j^''^sdX (6E.7) 
n=-N -œ 

The integral in (6E.7) is the inverse Fourier transform of the ançlitude 

spectrum of x(t). If we identify the inverse domain variable as nl^, the 

output spectnm can be simplified to the finite series: 

Y(cu) = ? x(nT )e"j"^'^s (6E.8) 
n=-N ® 

In the frequency range of |ujj ^ Y(uu) is an estimate of the ançlitude 

spectrum, X(œ). As the number of sangles of the input function becomes 

large, the estimate converges to the "true" value. This expression for 

Y((ju) is identical to that of a discrete Fourier transform for a bandlimited 

spectrum. 

The output spectrum computed using Equation 6E.8 involves an infinite 

series of convolution integrals which convolve the sine function in M(uu) 

with the "tme" spectrum X(u)). This convolution in the frequency domain 

tells us that the spectrum of X(uu) is smoothed by the finite observation 

process. Spectral smoothing reduces the spectral resolution of the obser

vation and limits the ability of the measurement process to resolve two 
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closely spaced line spectra. The problem of spectral smoothing will be 

discussed in detail in several later chapters. 

Other discussions of sampling theory as applied to communication 

systems can be found in (Carlson, 1968» Ch. 7), (Thomas, 1969, Ch. 7), 

and (Schwartz, 1970, Ch. 3). 
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VII. THE FIRST PRINCIPLE OF DATA REDUCTION 

The reduction of real physical data often requires estimation schemes 

which include, either overtly or covertly, algorithms which modify the data. 

Often the selection of a particular estimation scheme results in observer 

bias being introduced into the data processing. A common example of this 

type of observer bias occurs in the selection of a lag window as is done 

in the Blackman-Tukey method of spectral analysis. Merely by selecting 

different types of lag windows, the observer can compute different esti

mated power spectra from the same observed data. In theory, we say that 

the autoeovariance function and the power spectral density function form 

a Fourier transform pair. When using a lag window, the inverse transform 

of the computed power spectrum will not "give back" the initial autoco-

variance function. This type of processing Is in violation of the First 

Principle of Data Reduction (Abies, 1974): 

"The result of any transformation imposed on the experi
mental data shall incorporate and be consistent with all 
relevant data and be maximally non-committal with regard 
to unavailable data." 

By the very nature of data processing and estimation it is ordained 

that the FIRST PRINCIPLE will be violated to some degree. The fact that 

all sampled data is finite in length causes this violation. Whenever 

real physical data is modeled by a madiematical function and a criterion 

of goodness is chosen, it follows that certain assumptions must be made 

about hew the model fits outside the domain of measurement. 

The first example of this is the modeling of a finite time series 

with a Fourier series. The complex amplitudes are computed by assuming 
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that the length of the observed series is the Fourier period, that the 

observed time series is periodic outside the interval of observation, and 

that the sampling rate is more than the Nyquist rate. If the observer 

has not sampled the data in such a way that these assumptions are valid, 

the computed complex amplitudes may be poor estimates of the "true" complex 

amplitudes. Observer bias has entered into the scheme by the method of 

data taking and by the tacit assumptions involved in using the digital 

Fourier transform. The irony of this situation is that the computed com

plex amplitudes can be used to generate the observed time series exactly. 

Of course we must realize that an infinite number of Fourier series may be 

used to describe a finite time series but only one was computed. 

A second example of time series modeling is the autoregressive-moving 

average time series. In maximum entropy spectral analysis, a least-square 

error criterion is applied to fit the observed time series. The assumptions 

in this method are that the process can be represented by an n'^-order 

autoregressive-moving average time series and that the observation time 

was long enou^ to permit an exact calculation of the autoregressive co

efficients. Also, it is assumed that the infinite time series can be 

computed from the estimated series. This is analogous to the assumption 

of periodicity In Fourier analysis. 

Althougih the first principle can never be ideally achieved it is worth 

striving for and any proposed data processing scheme should try to minimize 

its effects. Techniques which try to minimize the effects of data windows 

are referred to as "data adaptive spectral analysis" (Lacoss, 1971). 
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VIII, DATA ADAPTIVE SPECTRAL ANALYSIS 

The study of spectral analysis using only hypothetical or ideal data 

functions provides little insight into the practical problems involved in 

the study and analysis of empirical data sets. The reason for this is 

that a strictly mathematical analysis of data functions and spectral func

tions depends on the existence of infinite domains and infinite amounts of 

data. Attempts to modify the theory of spectral functions to apply to 

finite engirical data sets have been plagued by many problems. The theory 

that applies to infinite domains must be greatly modified to handle finite 

data sets. Spectral analysis methods for empirical data sets involve the 

definition and selection of various estimation procedures that, hopefully, 

result in realistic estimates of the "true" spectrum. A study of the 

various estimation procedures for spectral analysis constitutes the major

ity of effort in this type of research. A brief discussion of commonly 

used spectral analysis estimates will now be given and are used as an il

lustration of why data adaptive procedures are being sought. 

In most applications of spectral analysis, the goals are to determine 

the existence of "peaks" in the frequency spectrum, the location of these 

peaks, and their spectral power. The reason that the peaks are sought is 

that they contain the interesting information needed for scientific anal

ysis. Using definitions from information theory, a spectrum which is flat 

would be called a maximum entropy spectrum while a spectrum containing 

only one amplitude value would contain zero information. 
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Often, the amplitude spectrum is estimated directly by taking the 

fast Fourier transform of the empirical data. This procedure produces a 

discrete amplitude spectrum which is based on the assumptions that the 

data is periodic and spectrally limited both in the number of spectral 

components and the frequency of the highest conçonent (See Chapter XII). 

In statistical studies of spectral functions derived from sample functions 

of a real process, the amplitude spectrum is avoided for theoretical 

reasons because it may not exist or it will not give a power spectrum es

timate that converges. For this reason an alternate definition is often 

chosen. 

This alternate definition is the famous Wiener-Khinechine relations 

(Appendix I, Part F) using the autocorrelation function. This definition 

is preferred because of the previously given theoretical reasons. There 

are severe problems associated with the use of an autocorrelation function 

for empirical data. First, the estimated autocorrelation is badly trun

cated. If the spectrum is estimated by taking the Fourier transform of 

this truncated function, many additional frequency conçonents are intro

duced that are not in the original spectrum. Second, this estimate is 

obtained from only one sample function of the process. For statistical 

reasons, many sançles are needed to make the autocorrelation function con

verge to the "true" value. Third, the algorithm used to determine the es

timated function uses less data as the lag value increases. This causes 

the function to be a poor estimate for large values of lag. Practical 

schemes for estimating the power spectrum of a random process must take 

these undesirable effects into account and minimize their effect on the 
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accuracy of the estimate. 

The most commonly used method of spectral analysis of empirical data 

is the Blackman-Tukey method (Blackman and Tukey, 1958). This method uses 

the autocorrelation definition for the power spectral density of a random 

process. Their approach to the problems associated with the estimated 

autocorrelation function was to introduce a lag window function which 

would be multiplied with the estimated autocorrelation function. The lag 

window function was chosen so that it would weight the autocorrelation 

values in such a way that values near zero would be emphasized and large 

lag values would be removed or smoothed to zero. Their fundamental assump-

tion was that the modified estimate of the autocorrelation function would 

give a respectable estimate of the smoothed values of power spectral den

sity even though the weighting process actually produced a poor estimate 

of the "true" autocorrelation function. This assumption has been surpris

ingly effective in a number of practical applications and accounts for the 

success of this method. 

Although the Blackman-Tukey method is probably the best method in 

common use, it has serious drawbacks in many scientific applications. 

First, for limited amounts of data, the estimated autocovariance function 

is severely truncated and the process of "windowing" further reduces the 

range of useful lag values. The method recommends that only about 5 to 10 

percent of the estimated autocovariance function be used. This procedure 

effectively removes much valuable data that might otherwise be used in the 

estimation of the spectrum. Second, the selection of a lag window intro

duces bias into the data and tempts the observer to "select" a window func

tion that produces the "most agreeable" spectrum. The use of a lag window 
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function is also found to be objectional on theoretical grounds because 

it causes "negative" power spectra to be produced. Third, in many practi

cal situations, the goal of spectral analysis is to detect and resolve two 

closely spaced spectral peaks but the Blackman-Tukey method of using a lag 

window produces a smoothed estimate of the "true" spectrum resulting in a 

loss of spectral resolution. The most obvious questions to be asked are: 

1) How can the data be processed to use all of it and still avoid the 

problem of truncation and 2) How can the smoothing effect associated with 

"windowing" be minimized to produce the best spectral resolution? Data 

adaptive spectral analysis methods are an attençt to answer these questions. 

The discussion of the drawbacks in the Blackman-Tukey method should 

not be viewed by the reader as an attempt to discourage the use of this 

method. On the contrary, there are many practical situations \rfiere this 

method gives very good results. It is important that the reader be aware 

of the problems attendant to the use of a lag window and the possible al

ternatives to its use. As is often the case, the user will probably try 

several methods and compare the results with his a priori knowledge about 

the measured process. 

There has been much work done on the selection of an "optimum" window 

function and many window functions are in common use (Otnes and Enochson, 

1972). The primary goals of this work have been to retain as much spectral 

resolution as possible and still minimize the production of "negative" 

power spectra. One cannot escape the fact that the concept of a window 

function will always be valuable in the discussion and applications of 

power spectrum estimation techniques. Windowing can, however, be ap
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proached in entirely different ways if alternate modeling techniques are 

employed such as those used in data adaptive spectral analysis. 

In recent years, data adaptive methods of spectral analysis have re

ceived increasing attention from experimentalists. These methods attack 

the problem of limited data and are producing surprisingly good spectral 

estimates using data that cannot be easily processed by the Blackman-Tukey 

method. Data adaptive methods are based upon assumptions which allow 

limited degrees of smoothing and extrapolation to be applied to the esti

mated autocorrelation function. Within the limits of the various as sung)-

tions, this technique essentially produces an infinite function which can 

be easily handled by conventional theory. This approach essentially cir

cumvents the need to select a window function but has not eliminated the 

theoretical requirement that a truncated autocorrelation function needs 

some type of "windowing". The way in which a truncated autocorrelation 

function may be smoothed and extrapolated is governed by the criterion that 

is selected for the particular estimation routine used. Data adaptive 

methods are so named because the empirical data actually governs the opti

mization criterion used for smoothing and extrapolation. It can be said 

that the problem of windowing adapts itself to fit the nature of the data. 

Lacoss (1971) published a widely referenced paper in vrfiich he discusses 

the mathematical formulation of such data adaptive techniques as maximum 

likelihood and maximum entropy. His use of a matrix formulation of the 

methods adds a valuable dimension to their understanding and provides the 

reader with more theoretical insight than can be obtained by studying the 

algorithms only. This paper is highly recommended reading because it com-
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pares the data adaptive methods with more "conventional" methods. 

This discussion has been given to provide the reader with the necessary 

insight into the problems associated with the estimation of power spectra. 

It should be ençhasized again that the problem of truncated data is not 

considered by conventional theory and that various estimation techniques 

must be used. These estimation techniques involve either the direct use 

of a windowing function as in the Blackman-Tukey method or smoothing and 

extrapolation as done in the data adaptive techniques. The selection of a 

particular technique of spectral analysis is discussed in Chapter IX. The 

implementation of some of these various techniques is discussed in later 

chapters. 
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IX. METHODS OF SPECTRAL ANALYSIS 

The selection and application of a particular method of spectral 

analysis is a very complicated task and offers many challenges for the 

potential user. The development of a method usually begins by selecting 

known estimators and then modifying them to fit the conditions of the prob

lem. This process of development often requires a unique mixture of theory, 

art, and "luck" before a suitable solution is obtained. 

Estimators obtained from the theory of spectral functions can be 

greatly in^roved if as much information as possible is incorporated into 

the development of a technique. Physical boundary conditions, a priori 

assumptions, and other information should be used. Modifying the estimator 

in these ways can be thought of as a type of model fitting. It should be 

apparent that effort expended in obtaining the best starting model will pay 

off in producing the best final results. 

It is ironic that the selection of a "best" spectral estimator often 

depends upon a priori assunç>tions that may or may not be valid for the 

empirical data to be analyzed. For example, the computation of an ampli

tude spectrum by Fourier analysis techniques depends upon the assumption 

that the function is periodic and that it has been observed for exactly 

one Fourier period. This assumption is seldom true but the ançlitude 

spectrum is estimated this way by most users. Another example is the 

representation of ençirical data by an autoregressive series. It must be 

assumed that the process produces a sample function that is an autoregres-

sive series before the autoregressive spectral estimator can be used. 

Again this assumption is seldom true but the autoregressive spectral esti-
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mater is used with good success and can give very good approximations to 

the spectrum of a periodic function provided the autoregressive series has 

enough coefficients. The validity of these various assumptions will affect 

the accuracy of the spectral estimate and offers a basis for judging the 

"goodness" of a particular technique. The effect of the various assumptions 

will be discussed in detail in later chapters. 

A data function is characterized in the frequency domain by its ampli

tude spectirum or its power spectrum. These spectrums are estimated by ap

plying various filtering techniques and using the theory of spectral func

tions given in Chapter IV. Since spectral estimation theory is based on 

the use of filtering, Fourier transforms, and autocorrelation functions, 

the development of suitable estimators is primarily concerned with obtaining 

good approximations to the integrals in these techniques. Estimators for 

the amplitude spectrum are based on the discrete Fourier series or trans

form. Estimators for the power spectral density function are based on 

filtering and/or the autocorrelation function and its transform. The auto

regressive spectral estimator is based on the discrete form of the auto

correlation companion function discussed in Chapter XV. The various es

timators can also be described in terms of linear predictive filtering and 

recursive digital filtering. 

A. Computing Methods 

It is difficult to place the various spectral analysis methods into 

distinct categories because of the large mmiber of variations that can be 

applied. For the benefit of the reader, a brief listing will be given in 
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an order that seems the most logical to the author. Other methods of 

presentation based on different viewpoints would be equally logical. The 

amplitude spectrum can be obtained by computing the Fourier transform of 

the data function. This scheme seems suitable and no other methods are 

commonly used. The computation of the power spectrum is quite a different 

matter. Most schemes are based on the autocorrelation function, recursive 

digital filtering, or the autoregressive spectral estimator. Methods which 

avoid the explicit use of a window function are called data adaptive methods 

(See Chapter VIII). Estimators for the power spectrum include: 

1. The Blackman-Tukey method (autocorrelation function, window func

tion) . 

2. The direct Fourier transform method (amplitude spectrum squared). 

3. Recursive digital filtering. 

4. Data adaptive methods, 

a) maximum likelihood method. 

b) maximum entropy method. Burg algorithm. 

c) maximum entropy method, Levinson algorithm. 

5. Bartlett estimator. 

6. Autoregressive spectral estimator. 

These various estimators do not represent completely independent methods. 

For example, the data adaptive methods and the autoregressive method can 

be formulated with the same mathematics that is used to describe recursive 

digital filtering. Likewise, the autocorrelation function and lag window 

function can be represented by analogous equations representing the digital 
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filter. The Blackman-Tukey method could then be formulated with the proper 

selection of a recursive filter. The selection of a particular representa

tion often depends on the viewpoint adopted by the user or his estimation 

of the most "economical" approach. 

B. Data Collection and Experimental Design 

The observation and collection of data can have an important inter

active effect with the chosen method of spectral estimation. The experi

menter should consider the effects of data collection on the errors intrin

sic to a particular spectral estimator. An observation system model for 

spectral analysis studies is shown in Figure 9B-1. A hypothetical sample 

function, s(t), is used to model a ergodic real process. It is assumed 

that s(t) will generally contain both random and periodic conçonents and 

is properly well-behaved so that its autocorrelation function and power 

spectrum exist and are well-defined. In theory, the "true" sample function 

Multiplier 

Filter 
h(t) 

Spectral 
Estimation 

Sampled - data 
Function, d(t) 

Stationary real 
process, s(t) 

Sançling Function 
m(t) 

Figure 9B-1. Observation System Model for Spectral 
Analysis Studies 



www.manaraa.com

69 

of a process is inaccessible to direct observation. This is because the 

observation process limits the. observation bandwidth and total number of 

data samples. This has the effect of limiting the spectral bandwidth and 

resolution of any spectral estimator. 

The inherent bandwidth limiting effects are modeled by a filter with 

impulse response, h(t). This filter may represent the time constants 

associated with probes, cables and other electrical conductors or it may 

represent the use of prefiltering for the sampler. Prefiltering is neces

sary for the successful operation of a practical data sampler. This filter 

is designed to have a sharp cutoff characteristic to limit the maximum 

spectral coiig)onent that is transferred to the sandier. The filter should 

be designed so that it effectively attenuates all frequencies above the 

1 
folding or aliasing frequency, f = . The filter passband and the 

^ s 
sampling rate can be properly designed to make the problem of aliasing 

negligible conçared to spectral mixing errors in the estimator. 

The effects of finite data sampling are modeled by a multiplying or 

"natural" sampler. The effects of data sampling on the spectrum of an in

put function were discussed in Chapter VI. The observable function, d(t), 

at the output of the sançler will be called the data function. This will 

be the function that represents the actual data used by the spectral esti

mation routine. The data function represents all that is observed about 

the generating process and its sançle function, s(t). All estimates of 

the spectrum of the process will depend on the observed data in the data 

function. 

The spectrum of d(t) can be considerably different than the spectrum 

of s(t) if proper experimental design is not used. First, the observation 
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filter will pass only those spectral components of s(t) which are in the 

filter passband and will attenuate or reject those components outside the 

passband. The filter output is the convolution of the sample function, 

s(t), and the filter impulse response, h(t). If the spectral estimator is 

capable of producing highly accurate estimates of the spectrum of d(t), it 

may be necessary for the experimenter to deconvolve or "inverse-filter" the 

output to obtain a better estimate of the spectrum of s(t). Second, the 

sampler will introduce frequency multiplication and some aliasing of the 

spectrum passed by the filter. Third, the limited number of available data 

samples will limit the spectral resolution of the estimator. All of these 

effects must be accounted for if acceptable estimates are to be obtained. 

Many of the problems caused by the observation and sançling of a 

process can be minimized by proper experimental design. For example: 

1. The filter bandwidth can be made wide enough to pass all signif

icant spectral components of s(t). 

2. The sampling rate can be made high enough to avoid aliasing 

problems. 

3. The output of the sampler can be digitally filtered so only the 

baseband spectrum (also called the principle alias) is determined. 

Even with careful experimental design, the estimated spectrum of a 

process can never converge to the "true" spectrum because of the intrinsic 

spectral estimation errors. A finite, sampled-data function will always 

be corirupted by aliasing, leakage, spectral smoothing, and statistical 

variability. 
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C. Data Preprocessing and Intrinsic Spectral Estimation Errors 

Empirical data that must be used for spectral studies often is cor

rupted with errors that are due to the observation technique or are in

herent to the estimation process. The user can minimize these effects by 

properly preprocessing the data and choosing an estimation method that will 

minimize intrinsic effects. The following data preprocessing techniques 

can be used, when needed, to improve the accuracy of a chosen spectral 

estimator: 

1. Wild point editing. 

2. Trend removal. 

3. Remove average value ("dc" value). 

4. Smoothing and decimation. 

5. Prewhitening. 

6. Rejection filtering. 

Wild point editing is necessary when the observation procedure is 

likely to introduce data values that are erroneous and not related to the 

"true" data. These types of errors are usually due to equipment malfunc

tions and gross errors committed by the observer. A "wild" data value can 

cause considerable trouble in an estimation routine if the amount of data 

is limited. For instance, a least-squares fit can be greatly influenced by 

a data value that is far removed from the mean. The least-squares method 

would place great inqjortance on the value because it has a small probability 

of occurrence. The selection of an editing scheme is largely a matter for 

user definition and depends on the type of data to be collected. Â scheme 
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that rejects data points with large variance is discussed in Otnes and 

Enochson (1972, p. 56). 

Trend removal is an euphemism for treatment of nonstationary data 

that has a mean value that varies over the interval of observation. This 

violation of the assumption of stationarity is not serious if the rate of 

variation of the mean is very slow conçared with the rate of fluctuation 

of the data. This slow variation in the mean value can be removed by 

model fitting with a low-order polynomial, partial sinewave, exponential 

function or other estimation schemes listed in Chapter III. Trend removal 

causes an irrevocable change in the low frequency spectrum of the data and 

cannot be used if low-frequency spectral estimation is important. Trend 

removal can be treated as a process of highpass filtering and appropriate 

filtering techniques can be applied. 

The removal of the average value from the data function is really a 

simple form of trend removal where the "dc" spectral component is "filtered" 

out. The accuracy of most spectral estimators can be improved by removing 

the average value because this minimizes the "spectral mixing" effect 

(Chapter XI). This "spilling over" or "leakage" of one spectral component 

onto the frequency of another is an important source of estimation error 

and "dc" removal is almost always recommended. 

Smoothing and decimation can be applied to data functions that are 

sampled at several times the Nyquist rate. As discussed in Chapter VI, 

oversampling increases the spectral bandwidth and the total number of data 

samples. If the total spectral bandwidth is not needed to display the 

desired spectrum, it is often desirable to filter or smooth the unwanted 
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spectrum. This will minimize the effects of spectral mixing and reduce any 

high frequency noise that may have been introduced in the measurement pro

cess. Decimation (Blackman and Tukey, 1958, p. 45) refers to the process of 

reducing the total number of data points by selecting only every second 

or third sançle. This process has the effect of reducing the sampling 

rate and increasing the sampling inteirval to 2^T, 3^T, etc. Decimation 

is practical only when the data are highly overs amp led and the desired 

spectral bandwidth is well-defined. Oversampling of data has some desir

able features such as improved estimation accuracy and minimization of 

aliasing problems that should not be overlooked. Decimation should only 

be applied when the reduction of the total number of data samples is ab

solutely necessary due to processing efficiency problems. 

One of the most frequent causes of errors in spectral analysis is 

that due to spectral mixing (called intermodulation distortion by Blackman 

and Tukey). This problem is especially severe when the data spectrum 

contains one or more peaks which have a high spectral power. Some of this 

power will "leak" into another part of the spectrum and give an erroneous 

contribution to the spectral amplitude. The leakage power can be so high 

as to cause the true spectrum to be completely "masked" by the leakage 

contribution. The spectral mixing problem is greatly reduced for a data 

spectrum which is essentially flat or "white". It is often observed that 

spectral estimators give the most accurate results for a "white noise" 

spectrum. Prewhitening refers to the process of adding a synthetic signal 

to the measured data signal that will add to the data spectrum to make it 

essentially flat. This "prewhitened" signal is then spectrum analyzed 
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and the resulting spectrum corrected for the added spectnm. 

Prewhitening essentially corrupts the data with additional noise and 

may cause the "purist" to reject its use. This should not be the case, 

however, because it is designed to iiqjrove the estimation and not the 

theory of spectral analysis. There is a strange aspect of prewhitening 

that needs further discussion. This involves the design of a filter or 

other processor that is used to prewhiten the data. One might suppose 

that the technique used to determine the required synthetic spectrum might 

also be suitable for estimating the data spectrum directly. This is in

deed the situation and the data adaptive techniques that ençloy recursive 

digital filtering are used to compute a "prewhitening filter" that is used 

directly to estimate the data spectrum. The prewhitening filter concept 

is the basis for the autoregressive spectral estimator and the maximum 

entropy spectral estimator. 

Rejection filtering is yet another attençt at reducing the effects of 

spectral mixing. This preprocessing technique should be used if the data 

spectrum has an unusually strong peak. The amplitude of this peak can be 

reduced by notch filtering to make it comparable with the rest of the 

spectrum. The application of this technique usually requires at least 

one "run" of the data function through a spectral estimator that will 

detect this strong peak. The characteristics of the rejection filter 

must be retained in the processor so that the spectral peak may be "recon

stituted" in the final estimate. 

The preprocessing of ençirical data and the careful selection of a 

spectral estimator are necessary for successful spectral analysis. These 

processing and selection techniques are designed to minimize the effects 
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of intrinsic spectral estimation errors. Intrinsic errors are those 

which are present for all estimation methods. These errors often do not 

appear explicitly in the analysis of the estimation method and may cause 

unexpected problems if the user is not aware of them. The most common 

errors are listed as follows: 

1. Aliasing (undersampling). 

2. Spectral mixing (intermodulation distortion or "leakage"). 

3. Spectral smoothing. 

4. Statistical variability. 

5. Lack of stationarity. 

Aliasing or frequency fold-over is caused by undersançling or sampling 

at a rate that is less than the Nyquist rate. Aliasing will be present to 

some extent in all practical sampling systems. The undesirable effects of 

aliasing can be minimized by the use of sharp cutoff filters and adequate 

sampling rates. Every attempt should be made to make the effects of 

aliasing negligible compared to the effects of spectral mixing. Aliasing 

is discussed in detail in Chapter VI. 

Spectral mixing is the most severe problem in spectral analysis. 

Most estimators are designed to minimize its effects but it still causes 

problems when the data spectrum has one or more high spectral peaks. This 

problem can be described by a "leakage" of the power at one spectral 

frequency into another frequency. Lag window functions that are used in 

the Blackman-Tukey method are usually chosen to minimize leakage. The 

term leakage is derived from the analogy between a window function and the 
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field pattern of an antenna. The one-dimensional aperture distribution 

and the far-field power pattern for a beam antenna are reciprocal Fourier 

transforms as are the lag window function and the spectral window function. 

The minor lobes of the antenna cause "leakage" of the power that is wanted 

in the main beam. Likewise, the lag window function causes leakage of 

the spectral power at the observed frequency into adjacent frequencies. 

The problem of spectral mixing is present whenever the observed data func

tion is truncated. This is true for all known estimators. In most prac

tical schemes, the problem of leakage can be traded off against the prob

lem of spectral smoothing. 

Spectral smoothing is also caused by the truncation of the observed 

data function. The lack of enough data to resolve closely spaced spectral 

components causes two nearby peaks to be "smeared" together. The only 

solution to the smoothing problem is to observe the data function for a 

longer period. In the Blackman-Tukey method, spectral smoothing is an 

obvious result of the convolution of the spectral window function with the 

"true" spectrum. As the period of observation increases, the spectral 

window function becomes very narrow and approaches a Dirac delta function. 

When this happens, the estimated spectrum converges to the true spectrum. 

In filtering and data adaptive techniques, the spectral smoothing effect 

is not so obvious. It is introduced indirectly when the data function is 

smoothed and processed to obtain estimates of the filter coefficients or 

autoregressive coefficients. Data adaptive spectral estimators such as 

the maximum entropy estimator are superior to the Blackman-Tukey method in 

their ability to minimize the effects of spectral smoothing and to give 
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better spectral resolution. This improved resolution is due to the fact 

that the adaptive methods utilize all of the data while the Blacfcman-Tukey 

method is restricted to about 5 to 10 percent of the total lag values. 

The reason for limiting the useful range of lag values in the Blacfcman-

Tukey method is to minimize the effects of statistical variability in the 

estimate. 

The statistical variability of the estimate is caused by the finite 

observation time for the data function. The time autocorrelation function 

definition for power spectra is valid only if the process is both station

ary and ergodic. The definition of the time autocorrelation function 

depends on an infinite time. If the data function is observed for a 

finite time, the time autocorrelation function is only an estimate of the 

"true" function. This introduces statistical variability into the esti

mated autocorrelation function that directly carries over into the esti

mate of the power spectrum- The effects of statistical variability can 

be reduced only by making many observations of the process to obtain and 

"average" autocorrelation function- A large number of truncated estimates 

of the autocorrelation function will sufficiently reduce the effects of 

statistical variability but will have no effect on the spectral smoothing 

problem. Spectral smoothing can only be reduced by increasing the length 

of time the samples are observed. 

If an observed process is not stationary, most spectral theory and 

commonly used spectral estimates will not apply. The power spectrum of 

the process will be a function of time and can only be obtained from the 

ensemble definition of the autocorrelation function. If the time variation 
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is slow enough so that the spectrum is essentially constant for the time 

interval of observation, a "quasi-stationary" estimate can be obtained. 

In this instance, the deleterious effects of a short observation time 

must be traded against those of a time varying spectrum. The display of 

time varying spectra can be accomplished by a power spectral density pro

file plot (Otnes and Enochson, 1972, p. 415). 

The multitude of effects involved in the preprocessing of the data 

function, the sançling process, and the intrinsic spectral estimation 

errors must be collectively considered in the process of method selection. 

D. Method Selection 

Method selection should begin with a detailed study of the physical 

process that generates the data function. The purpose of this initial 

study is to discover and incorporate as many constraints as possible into 

the process model. The constraints will help to improve the accuracy 

and/or efficiency of the estimator and often mean the difference between 

success and failure. After the constraints are determined, the next step 

is to see how the various possible estimators compare in efficiency, 

accuracy, bias, and other appropriate characteristics. For these com

parisons, the user must define a criterion of goodness and determine what 

estimator is "best" for his application. This determination will often 

involve a detailed mathematical analysis of the estimator coupled with 

several tests using hypothetical data samples from a "kncwn" process. 

Finally, once an estimator is chosen, the spectra produced by this esti

mator must be interpreted as to its accuracy and ability to minimize such 
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effects as aliasing, leakage, and spectral smoothing. 

It is very difficult to develop a step-by-step procedure for the 

spectral analysis of data. Each problem presents its own unique set of 

boundary conditions and each experimenter must choose a criterion of 

goodness that is suitable for his purpose. Spectral analysis "by the 

numbers" is not possible under these circumstances. Some general guide

lines are possible if the reader is willing to accept loosely defined 

boundary conditions and criteria of goodness. These guidelines will now 

be presented along with an examination of the more fundamental processes 

involved in spectral estimation. These fundamental characteristics are 

discussed in Section E of this chapter. 

A flowchart of some conmonly used spectral analysis schemes is 

shown in Figure 9D-1. The top flowchart shows the possible theoretical 

analysis methods for the theoretical data function, s(t). There are 

essentially three ways of obtaining a spectral function. First, for a 

periodic function, the amplitude spectrum is determined by the complex 

amplitude coefficients of the Fourier series. The spectrum is bandlimited 

and discrete for all real data functions. The ançlitude spectrum can be 

used to reconstruct the original data function. Second, the spectrum of 

a single time pulse can be specified by taking the Fourier transform. The 

resulting aiiq>litude spectrum is both continuous and infinite. As before, 

the time pulse can be reconstructed by taking the inverse Fourier trans

form. Third, for random processes, the power spectrum is defined as the 

Fourier transform of the autocorrelation function of the process. For 

many theoretical data functions that represent sample functions of a real 
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process, the amplitude spectral function is not defined because the Fourier 

transform of the data function does not exist. For these functions, the 

original time function cannot be reconstructed from either the autocorre

lation function or the power spectrum. The autocorrelation function def

inition for the power spectrum is widely accepted as the most useful for 

random processes and can also be applied, if one accepts the use of the 

Dirac delta function, to periodic functions and single time pulses. 

The bottom flowchart in Figure 9D-1 shows several commonly used 

spectral estimators and their most important processing steps. The 

Blackman-Tukey method, the data adaptive techniques, and the autoregres-

sive spectral estimator all use the autocorrelation function definition 

for the power spectrum. The recursive digital filter methods defines the 

power spectrum by computing the power output of the filter. The direct 

Fourier transform method defines the power spectrum by computing the 

absolute magnitude squared of the complex Fourier coefficients obtained 

by taking the digital Fourier transform of the empirical data function. 

A typical empirical data function is made up of 2N + 1 samples of the 

theoretical data function. Since this time series is limited both in the 

total number of samples and the length of observation time, it can be 

exactly represented by a Fourier series with 2N+1 complex amplitude co

efficients (double sided spectrum). The coefficients can be used to de

termine both the amplitude spectrum and the power spectrum. The accuracy 

of this estimate will depend on the nature of the "true" data function. 

Likewise, this same data function can be represented by an autore-

gressive series of any order from order one to order 2N+1. The power 
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spectrum can be estimated by using the autoregressive spectral estimator 

or the autoregressive series can be used to generate the discrete auto

covariance function and then the discrete Fourier transform used. This 

scheme can be applied to any truncated and discrete data function. The 

accuracy of the spectral estimate will again depend upon the nature of 

the "true" data function. 

In still another way, this empirical data function can be used to 

determine the estimated autocovariance function for use in the Blackman-

Tukey method of spectral estimation. The accuracy of this method will 

depend upon the amount of data available for obtaining the autocovariance 

estimate and the window function selected for smoothing. As the amount 

of data becomes large and the observation time increases, the Blackman-

Tukey estimate will converge to the "true" autocorrelation function def

inition of the power spectrum. This property of the Blackman-Tukey method 

makes it the "best" estimator in terms of adherence to the autocorrelation 

definition of power spectra. 

It may be difficult for the reader to accept the fact that these 

methods may all be considered "exact" for the purposes of representing 

the empirical data function. In this sense, any of the methods could be 

used to define the spectrum of an empirical data function. The only way 

to validate a particular method as being the "best" estimator is to apply 

some a priori knowledge about the process that generated the data. In 

other words, if absolutely nothing is known about the process that gen

erated the empirical data function none of the spectral estimators can 

be selected as a "best" estimate. 
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The a priori knowledge needed to select a best estimator does not 

have to be very detailed or specific. Usually, a very general assumption 

can be used that will help. As an example, we consider the assumptions 

needed to justify the more common spectral estimators. To use the auto-

regressive spectral estimator it is necessary only to assume that the 

data function can be represented by an autoregressive series because the 

process is autoregressive. This assunçtion is surprisingly good for many 

practical data functions. The digital Fourier series representation is 

exact if the data function is assumed to be periodic and if the period of 

observation is exactly equal to one Fourier period. The maximum entropy 

estimator is valid if it is assumed that the process is autoregressive 

and that the resulting spectrum has maximum spectral entropy. An addi

tional boundary condition on this estimator is that the autocorrelation 

function and power spectral density function be exact reciprocal trans

forms (no window function), 

The Blackman-Tukey estimator differs from most of the other estimators 

in that it converges to the "true" spectrum for random processes as in

creasing amounts of data are taken. This circumstance is brougjit about 

because of the choice of the definition for the apparent autocovariance 

function. The assumptions required for validating this method are: 

1. The Fourier transform of the modified apparent autocovariance 

function is a respectable estimate of the smoothed valued of the 

"true" spectrum. 

2. The statistical variability of the estimate is small enough .to 

be acceptable. 
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In theory, the Bladanan-Tukey estimator is capable of giving the best 

spectral estimate when the data function is well-sampled. 

When nothing is known about the process that generated the data 

function, it is safest to select an estimator that requires the weakest 

assumptions about the process. Recent work by researchers in geophysics, 

astronony, and other scientific areas that require the tools offered by 

digital spectral analysis has shown that the maximum entropy spectral 

analysis method offers higher spectral resolution and improved estimation 

accuracy over previous methods. If large amounts of data are available, 

the Blackman-Tukey method can also be successfully used. 

Figure 9D-2 is a data processing flow diagram that illustrates how 

data might be processed to obtain a spectral estimate. The diagram is 

based on the consideration of several characteristics of the spectral 

analysis problem. These are: 

1. The process model. 

2. Discrete or continuous output. 

3. Amount of available data. 

4. Sampling rate. 

5. Desired accuracy of estimate. 

"Real data" represents the actual signal output from the process. If it 

is continuous, an analog spectrum analyzer can give the desired spectrum. 

If the output is analog but has a finite duration, the data record will 

usually be sampled and preprocessed. The proper experimental design should 

be observed so that die finite record is sampled above the Nyquist rate 
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and prefilteriilg should be used. If the data output are already in the 

form of a time series, the experimenter cannot exercise control over the 

sampling process. If the data are undersampled, the spectrum of the time 

series will be aliased and spectral accuracy may be seriously degraded. 

If the data is periodic or "almost" periodic, it can be processed 

using the amplitude spectral estimator. A knowledge of the period of the 

function allows the use of some strong model constraints that can improve 

the statistical variability of the estimate by reducing random effects 

due to sampling or noise. If the data is not periodic or if the noise 

level is so high as to make the data function appear to be random, the 

data must be treated accordingly. 

Figure 9D-3 shows one possible scheme for selecting a spectral esti

mator for the empirical data function obtained from a random process. 

The decision as to what kind of estimator to use essentially depends upon 

how much is known about the process model and how much data is available 

for processing. A selection of possible estimators is shown. If a large 

amount of data is available for analysis and the process model is unknown, 

the Blackman-Tukey method can be used to give the most accurate estimate. 

The computational efficiency will be considerably reduced from the direct 

FFT method but this sacrifice may be desirable if the experimenter needs 

the improved estimation accuracy. 

If large amounts of data are available, there is a scheme that appeals 

to the author that is not shown in the diagram. The scheme essentially 

would be used when high accuracy estimates are needed. The Blackman-Tukey 

estimator would be used to make iterative calculations of the power spec

trum as the amount of data is increased for each estimate. The power 
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spectrum would be seen to converge and the rate of convergence and the 

variance of the final estimate would give a measure of the statistical 

variability of the estimate. This variability could be traded off against 

the resolution of the selected spectral window to give a user defined 

"best" estimate. The scheme can be described as the use of smaller sub

sets of data to obtain an estimate of the variance of the spectral esti

mate that used all available data. The author has not seen this scheme 

developed in the literature and has not had time to develop it in this 

research. Further study could be done to develop criteria for evaluating 

the limits on statistical variance and spectral resolution. 

The ultimate decision about the use of a particular spectral estima

tion scheme must be made by the user after serious consideration of the 

need for the estimate and the scientific consequences or conclusions to be 

made from the estimate. The occasional or casual user of spectral analysis 

and spectral estimation methods does not usually have the time to devote 

to a detailed analysis of possible estimation schemes. As a consequence, 

the casual user should be warned against placing great scientific inç>or-

tance on the results of the estimate. He should use well-developed esti

mators as discussed in this chapter or as given in Blackman and Tukey 

(1958) or Otnes and Enochson (1972). Any presentation of an estimated 

spectrum and scientific conclusions based on that estimate should be well-

supported by a discussion of the details of the estimation scheme used. It 

is especially important to list all assumptions necessary to make the esti

mator valid. 
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It would appear to this author that maximum entropy spectral analysis 

will become an increasingly important technique in future years. Its a-

daptibility to the data and its inçroved spectral resolution over other 

methods should establish it as the method most recommended to the casual 

user. It is especially useful when the amount of experimental data is 

limited. At the present time, the practical inç>lementation of this tech

nique is not well-discussed in the literature. The reader is referred to 

Chapter XV and Appendix III for a further discussion. 

The experienced or serious user of spectral analysis theory and theory 

of spectral estimators must devote a considerable amount of time to the 

study of estimation theory and the criteria of goodness associated with the 

selection of a "best" method. He must especially be familiar with the 

strengths and weaknesses of each method and the attendant assunçtions. In 

most cases, more than one spectral estimator should be used to analyze the 

empirical data function of a real process. The use of more than one esti

mator can help to reduce the effect of intrinsic estimation errors and 

provide more confidence in the estimate. 

A typical scheme for analyzing the spectrum of an unknown process is 

shown in Figure 9D-4. This scheme employs more than one kind of estimator 

and illustrates what the author considers a reasonable approach to a de

tailed spectral analysis study. A theoretical data function is prefiltered, 

sampled, and preprocessed to obtain an empirical data function. This em

pirical data function is used to do a spectral study of the process. Since 

the properties of the process are unknown, a process model cannot be de

veloped and estimation techniques that do not depend heavily on a particu-
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lar model should be used. First, the spectrum is estimated by the direct 

FFT method. This estimator is very computationally efficient and can 

provide a good first idea of the spectral shape. If the data is sufficient 

to warrant its use, the Blackman-Tukey estimator should be tried as it will 

give an estimate that converges (In theory, the direct method cannot). If 

the spectrum contains spectral peaks that may not be resolved, the spectral 

resolution can be improved by using the maximum entropy method. The spec

trum can be computed by either the FFT or by using the autoregressive 

spectral estimator. To reduce confutation time, the autoregressive spec

tral estimator need only be evaluated at frequencies near the spectral 

peaks. The results of these estimations should be compared and additional 

processing applied as needed. 

If the data is veiry limited, it appears that the use of the maximum 

entropy spectral estimator is the best choice for obtaining maximum spec

tral resolution. A summary of the fundamental properties of spectral 

estimators will help to illustrate their applicability and help the user 

to make a wise selection. 

E. Fundamental Characteristics of Spectral Estimators 

Spectral estimators are usually developed by starting with the various 

theoretical definitions for a spectral function and applying suitable es

timations and numerical approximations. A spectral estimator is usually 

designed to minimize the intrinsic estimation errors caused by finite data 

sampling. The various methods appear to differ because they represent 

different viewpoints concerning the "best" way to represent ençirical data. 
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These different viewpoints usually are the result of selecting different 

criteria of goodness and starting with different a priori assumptions. By 

carefully analyzing the commonly used spectral estimators, one can reach 

the conclusion that they do not represent entirely different approaches to 

the estimation problem. Because they are all derived from the same theo

retical basis, the various estimators share many common characteristics. 

When developing a suitable spectral estimator, there are essentially 

three commonly held viewpoints concerning the best way to treat the problem 

of finite data. These viewpoints have been developed by the author from 

reading the literature in this area and they may not represent the break

down that another author might choose. This author believes that this 

separation adapts itself nicely to the discussion of method selection. 

The three methods are: 

1. "Lag windowing" of the estimated autocorrelation function. 

2. Smoothing and extrapolation of the autocorrelation function. 

3. Recursive digital filtering. 

The use of a lag window function to give a smoothed estimate of the power 

spectral density function represents the approach taken by Blackman and 

Tukey (1958). The use of smoothing and extrapolation to obtain an estimate 

of the autocorrelation function is the method chosen by those who prefer 

data adaptive methods which do not have fixed window functions. Data a-

daptive methods such as maximum entropy and maximum likelihood (Lacoss, 

1971) smooth and extrapolate using their respective criteria. The trun

cated autocorrelation function can also be smoothed and extrapolated using 

purely mathematical means such as model fitting with some exact function. 
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This can be done using the straightforward techniques common to numerical 

analysis (Chapter III) or by using more exotic orthonormal expansions such 

as angular prolate spheroidal wave functions (Veltman et al., 1972). Re

cursive digital filtering gives an estimate of the frequency spectrum by 

confuting the average power over the bandwidth of the filter. The filter

ing method adds the flexibility of choosing the bandwidth of the estimate 

(within certain limits) but still suffers from problems such as leakage 

and computational efficiency. Recursive filtering has the tutorial ad

vantage of being able to represent a wide variety of discrete spectral 

estimators including the important maximum entropy estimator. 

The use of a lag window and the autocorrelation function definition 

of a power spectrum is treated in great detail in Blackman and Tukey (1958). 

A brief summary of this method showing how the use of a window function 

reduces the effects of statistical variability and produces a smoothed 

estimate of the spectrum will now be presented. In discussing the Black-

man-Tukey method we will use the autocovariance function instead of the 

autocorrelation function. 

An unbiased estimate for the autocovariance function (Appendix I, 

Part I) is defined by 

1T!)/2 

x(t - T/2)x(t +T/2)dt (9E.1) 

-CI^- |T|)/2 

where x(t) is a sample record of the process that has been observed for a 

time T^. C^(T) is called the apparent autocovariance function because it 
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is obtained from only one sample realization of the process. For each 

observed record, x(t), there will be a corresponding function, C^(T). 

Because C^(t) is an unbiased estimate, its expectation value for lag times 

between will be equal to the "true" autocovariance function, C(T). If 

several sample records are available, the corresponding apparent autoco

variance functions can be averaged to give a better estimate. Lag times 

near zero will show the least statistical variation because the most data 

is used for the estimate. As the lag value approaches +T^ the amount of 

data used for the estimate becomes very small and the statistical variance 

becomes very large. 

To avoid the use of lag values with large variances and to reduce 

problems associated with the truncation of the autocovariance function, 

Blackman and Tukey chose to multiply the apparent autocovariance function 

by a lag window function, D(T). The resulting function is called the mod

ified apparent autocovariance function: 

(5(T) = D(T)C^(T) (9E.2) 

Although it is purely arbitrary, the lag window function is usually chosen 

so that it will give the most weighting to lag values near zero and 

smoothly reduce the weighting factor to zero at lag values approaching 5 

to 10 percent of the total record. 

For this discussion, (?(T) will be called the estimated autocovariance 

function because it is this function that is used to obtain the estimate 

of the power spectrum. To examine the accuracy of this estimate, we first 

take the expectation value of (Î(T) as given by: 
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EC($(t)} = D(t)E{C^(T)} = D(T)C(t) k) <T^ (9E.3) 

Since, by definition, the expectation of C^(T) is equal to the "true" 

autocovariance for lag values between the expectation of ($(t) is 

equal to the "true" autocovariance multiplied by the chosen lag window 

function. 

The estimated power spectral density function is obtained by taking 

the Fourier transform of the expectation value of C(t). The result is: 

^E{(?(t)}} = E{^C(5(T)}} = Ef^Cf)} (9E.4) 

P(f) is the Fourier transform of one particular estimate of the autoco

variance and E{^(f)} is the expectation value of all possible realizations. 

The Fourier transform of the expectation value of (?(T) is equal to the 

Fourier transform of the product D(t)C(t) as given in Equation 9E.3. The 

transform of the product is the convolution of the transforms of D(t) and 

C(t). The final result is that the expected value for all possible real

izations of the estimated spectrum is equal to the convolution of the 

"true" power spectrum with the spectral window function Q(f) 

. +® 
ECP(f)} = J Q(f-X)P(X)dX (9E.5) 

-ce 

where Q(f) is the Fourier transform of the lag window function (Appendix I, 

Part I). The best we can do with a finite data function is to give a 

smoothed estimate of the "true" power spectrum. Increasing the number of 

data records will help to reduce the problem of statistical variance but 

only an increase in observation time can help to improve the spectral 

resolution. 
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Under certain circumstances, it is theoretically possible to solve 

the convolution integral (deconvolution) to give the "true" power spectrrnn, 

P(f), when the spectral window function, Q(f), is known. For most prac

tical analyses this is not done because, with only a few sançle records, 

the error due to statistical variance is great enough to more than offset 

any inçrovement derived from deconvolution. 

A single exançle will be given to illustrate the smoothing and leakage 

problems associated with the use of a lag window. For simplicity, we 

choose a periodic sanç>le function, x(t), made up of three sinewave com

ponents. Many, sançle observations of x(t) are taken and the corresponding 

apparent autocovariance functions computed. These values are then averaged 

to produce a close estimate of the "true" autocovariance function for lag 

values between +T^. This averaging reduces the statistical variance for 

the apparent autocovariance function. The "true" autocovariance is not 

known for lag values greater than T^ because the sample function was not 

observed for time intervals greater than this. 

The average (or expected) value for the time autocovariance function 

is shown in Figure 9E-1. This truncated function is multiplied by a 

rectangular window function to produce the estimated autocovariance func

tion, C(T). The width of the window function must be chosen narrow enough 

to minimize the effect of statistical variation in the observed sançle 

functions. Blackman and Tukey recommend that the width of the lag window 

be no more than 5 to 10 percent of the total lag record. In our exançle, 

the width is much wider because the statistical variance has been reduced 

by averaging multiple observations. For this example and others to follow. 
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continuous functions will be illustrated. Usually the actual data 

processing will be done digitally but the continuous functions more clearly 

illustrate the results without the additional conçlication of sampling. 

The spectral functions associated with the Blackman-Tukey method and 

this example are shown in Figure 9E-2. The effects of windowing and 

truncation can be illustrated by conçaring the "true" spectrum, P(f), with 

the estimated spectrum, ]^(f). The estimated power spectrum has been ob

tained by convolving the spectral window function, Q(f), with the "true" 

spectrum, P(f), The spectral window function is a sine function obtained 

by taking the Fourier transform of the rectangular lag window function. 

The estimated spectrum is the superposition of many sine functions. Each 

line spectrum in P(f) will generate a sine function of corresponding 

amplitude in the estimated spectrum, ̂ (f). These sine functions are shown 

separately in the last plot of Figure 9E-2. Spectral smoothing has caused 

the two closely spaced eon^onents at f^ and f^ to be smeared together. The 

smaller spectral component at f^ has been obscured by this loss of spectral 

resolution and most likely would go undetected. Also, the spectral com

ponent at f^ has been smeared out and leakage has caused considerable error 

in the estimated amplitude of the lower frequency conçonents. Not shown 

is a dc eonç)onent in the spectrum caused by the net average value in the 

es timated autocovariance. 

The window function has also introduced some negative power spectra. 

"Negative power" is not possible physically and its presence in this esti

mation routine is one of the major conçlaints of the users of this method. 

The generation of negative conçonents in the power spectrum can be reduced 
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by the proper selection of a lag window function. The rectangular window 

function is seldom used because it causes such a severe leakage problem. 

It does, however, have the best spectral resolution. Other window func

tions such as the Banning window or Hamming window (Otnes, 1972, p. 258) 

have much smaller leakage with only a small sacrifice in spectral resolu

tion. 

In many ways, the Blackman-Tukey method of spectral analysis can be 

viewed as a "fix-up" approach for handling a "difficult" apparent autoco-

variance function. They use essentially a three step approach to obtain a 

spectral estimator. First, they define one estimate of the time autocor

relation function that they call the apparent autocovariance function, 

C^(T). While this estimator has desirable theoretical properties, it also 

has serious practical shortcomings. Second, the practical shortcomings of 

this estimator are minimized by using a lag window to obtain a second es

timator for the "true" autocovariance function. This second estimator, 

\^iich Blackzsan and Tukey call the modified apparent autocovariance function 

and the author calls the estimated autocovariance, is the function that 

must represent the "true" autocovariance function for spectral estimation 

purposes. Third, the Fourier transform of the estimated autocovariance 

function, is used to obtain the estimated spectrum. This three step 

approach has good and bad aspects that will now be summarized. 

For theoretical purposes, the Blackman-Tukey definition of the apparent 

autocovariance function has many desirable characteristics needed for a 

good estimator. It converges to the "true" function as the record length 

becomes Infinite and hence is unbiased. Also, its expectation value is 
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equal to the "true" function for lag values between +T^. 

For practical purposes, these desirable characteristics are often 

overshadowed by the problem of statistical variation. This can introduce 

a "dc" conçonent not present in the "true" function. It can also make the 

estimate very poor for large values of lag. This happens because the es

timator (Equation 9E.1) uses very little data for lag values approaching 

A lag window function can be used to reduce the effects of statistical 

variance by removing the larger lag values. This effectively reduced the 

statistical variance in the estimated spectrum but it also introduces 

spectral smoothing effects. The selection of a suitable lag window be

comes a tradeoff choice between spectral resolution and statistical vari

ation. Â lag window removes valuable data that, although it may have a 

large variance, could still be used to give some improvement in the spec

tral estimate. 

A technique that avoids the problem of choosing a lag window function 

and that attempts to use all of the observed data has a lot of practical 

appeal. Such techniques come under the broad category of data adaptive 

techniques and apply methods of smoothing and extrapolation to obtain an 

"acceptable" estimate for the autocovariance function. Conceptually, 

smoothing and extrapolation are more difficult to justify than the use of 

a lag window. A criterion of goodness must be defined and its effect on 

the accuracy of the spectral estimate must be determined. It is entirely 

possible that an acceptable rational for smoothing or extrapolation may 

lead to a very unacceptable spectral estimate. 
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Generally speaking, two different viewpoints have been adopted con

cerning the "best" way to achieve smoothing and extrapolation. The first 

adopts a purely mathematical viewpoint and proceeds on the basis of well 

established numerical techniques for fitting numerical data with exact 

functions. This approach is often called a parameter free procedure (Velt-

man et al., 1972) because it does not depend upon any a priori assumptions 

about the observed process or the resulting data. The resulting spectral 

estimate is independent of any model for the process. The second viewpoint 

insists that an estimate of the "true" autocovariance function should be 

developed by assuming a reasonable and acceptable model for the process 

or the data. 

The parameter free procedure for smoothing and extrapolation is not 

well-suited for spectral analysis applications because it does not allow 

for the input of inçortant information that may be known about the process. 

Also, numerical analysis techniques ençloy criteria of goodness that can

not be easily related to the determination of the accuracy of the spectrum. 

In practical applications, the addition of known information about the 

process can be used as a powerful tool to inçrove the spectral estimate. 

For these reasons. It is usually better to choose a method based on some 

model. 

Estimation procedures that esçloy some type of process model do not 

have to be as restrictive as one might imagine. It usually turns out that, 

for purposes of general spectral analysis applications, the process model 

is designed to have wide applicability and only very modest restrictions 

on the data function are needed. If a considerable amount of model Infor-
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nation, is known about the process, the user is well-advised to design a 

spectral estimator that incorporates all of this information. This un

usual situation precludes the use of a "standard" procedure. 

Process models that have been very successful for obtaining smoothed 

and extrapolated autocovariance functions are those used in autoregressive 

spectral estimation and maximum entropy spectral estimation. These tech-

, niques operate directly on the observed data function to produce both the 

estimated autoregressive coefficients and the estimated autocovariance 

function. The power spectrum can then be estimated by using either the 

autoregressive spectral estimator (Chapter XIV) or by taking the Fourier 

transform of the estimated autocovariance function. 

For the autoregressive estimator, it is assumed that the observed 

data can be modeled by an nth order autoregressive series. Once the 

series coefficients have been determined by some appropriate smoothing 

and fitting technique, they are used in the spectral estimator. In the 

TïïflXTTm"" entropy method, it is assumed that the process produces a spec

trum that has maxirnim spectral entropy subject to the constraints that 

the process can be modeled by an autoregressive series and that the esti

mated. autocovariance and the estimated power spectral density form an 

exact transform pair (no window function). 

The estimated autocorrelation function produced by these methods 

satisfies all of the theoretical requirements set forth in the discussion 

on frequency domain analysis in Chapter IV. It is discrete but it obeys 

a well-defined mathematical equation and is defined for all lag values. 

This estimate can be considerably different from the one obtained using 
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the Blackmsm-Tukey method. It is now generally accepted that the mairinnm 

entropy method of spectral analysis has a spectral resolution superior to 

that of the Blackman-Tukey method . 

It is difficult to see just how these techniques develop a smoothed 

and extrapolated estimate unless the autoregresèive series approach to the 

characterization of a random time series is studied in considerable detail. 

This is not necessary for our purposes and the interested reader is re

ferred to a book by Koopmans (1974). It is important for the reader to 

realize that these techniques can be described by the mathematics associ

ated with the recursive digital filter. For example, the nmvitmim entropy 

algorithm can be described as a method for the design of a filter that 

prewhitens the input spectrum. The filter coefficients can then be used 

to obtain a spectral estimate (Ulrych; 1972b). This is also commonly re-

feirred to as prediction-error filtering (Peacock and Treitel, 1969). The 

Burg algorithm for determining the maximum entropy spectrum is a recursive 

procedure for calculating the prediction-error filter and the error power 

of the prediction (SnQrlie et al., 1973). 

The maxinaim entropy method, in particular, assumes that the process 

can be accurately described by an all-pole filter model (a "purely recur

sive" digital filter) and that the error power is minimized by a least-

square-error criterion. These assumptions also apply to the smoothed and 

extrapolated estimate of the autocovariance function. 

An excellent discussion of smoothing and extrapolation techniques for 

estimating autocorrelation functions with several examples is given in a 

paper by Veltman et al. (1972). 
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A third method of developing a spectral estimator involves the use 

of recursive digital filtering. It was stated in the previous discussion 

that a recursive digital filter could be used to obtain a Tnavimm entropy 

spectral estimate by using the concept of prewhitening. It can also be 

used in the more classical sense as a digital filter operating directly on 

the observed data. 

An analog spectrum analyzer sweeps a narrowband filter through the 

spectrum of the incoming signal and the detected power output of the filter 

is displayed as a function of frequency. For digital spectral analysis, 

the digital filter must be "stepped" through the desired frequency range 

and the "power output" determined at each step. At each new frequency step, 

the filter coefficients must be changed and the data processed through the 

filter. The method operates as though the actual time function were passed 

through an electrical filter and the resulting output detected to determine 

the average spectral power over the passband of the filter. Adopting this 

viewpoint will help the user to understand that the digital filter has all 

of the "real" problems associated with the analog filter. 

There are several problems associated with the use of digital filter

ing for spectral analysis. The transient response or "ringing" of the 

filter and its finite bandwidth reduce the accuracy of the spectral esti

mate. The transient response is especially troublesome if the data record 

is so short that the filter never reaches "steady state". The required 

modification of the filter coefficients for each frequency step and the 

repeated running of the data through the stepped filter may require large 

amounts of computation time. Finally, the user must develop a filter 
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ancî a criterion of goodness that is suitable for his purpose and that pro

duces an acceptable estimator. 

This last task is probably the most difficult one facing the potential 

user. If he is forced to use one of several "canned" procedures, he loses 

the ability to incorporate known information about the process. This is 

a serious disadvantage if model information is reasonably accurate. Unless 

a digital filtering technique has obvious advantages for a particular 

process model, it is usually advisable for the user to select another 

method of analysis. A discussion of the application of digital filtering 

to the estimation of power spectra is given in Otnes and Enochs on (1972). 
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X. KELBEET SPACE VECTOR FOEMDIATION OF 
DIGITAL FOURIER TRANSFORM ANALYSIS 

When this research was started and the mathematical forms for Fourier 

series and Fourier analysis were being investigated, the author noted the 

mathematical similarity between the Fourier analysis equations and those of 

Hilbert space vector analysis. Having just completed a quantum mechanics 

course, it seemed worthwhile to use the now familiar Hilbert space vector 

analysis to investigate the properties of digital Fourier analysis. The 

vector formulation that will follow was worked out in detail by the author 

and proved to be extremely useful in some of the subsequent mathematical 

derivations. Since that time, the author has discovered other references 

to this Hilbert space - Fourier analysis analogy but has not seen the 

mathematical details presented. The material that will now be presented 

was subsequently used to derive the spectral mixing formula and to describe 

many of the properties of digital Fourier analysis. 

The complex representation of a Fourier series is written as 

+® +j^nx 
f(x) = zee (10.1) 

n=-® ® 

which has conmlex anœlitu«?e« defined by: 

2TT 1 
G = C(—n) = r J e f(x)dx (10.2) 

The function f(x) is periodic with a Fourier period of T. The independent 

variable, x, ranges over +« but the principal range of x is +T/2. Since 

f(x) is periodic it is conçletcly specified by its values over the principal 

range of x. Since f(x) is not bandlimited, it may theoretically take an 
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infinite number of cong)lex ançlitudes to describe it. 

In Hilbert space vector notation, the coaçlex representation of a 

Fourier series is written as: 

-H» -Ho 
f(x,T) = Z a a (x,T) = Z (Q!_,f)a_(x,T) (10.3) 

n=-oo " " n=-eo " " 

The orthonormal basis set of eigenvectors is given by 

+j-^nx 
a^(x,T) = e ^ (10.4) 

where the vector "direction" is specified by the parameter n/T, The 

Hilbert space vector f(x,T) is an infinite linear combination of eigen

vectors a^(x,T). The complex expansion coefficients which are the eigen

values of f(x,T) are defined by the vector inner product as: 

1 * 
a = (û- ,f) = m J or (x)f(x)dx (10.5) 
n n T ® 

The "direction" of the Hilbert space vector is analogous to the Fourier 

period and the conçlex expansion coefficients are analogous to the Fourier 

conçlex asçlitudes. 

The vector norm for Hilbert space vectors is given by: 

, -ke/a * . 
( f , f ) = ^ J  f  ( x ) f ( x ) d x  =  I :  W J  ( 1 0 . 6 )  

^ -T/2 n=-® ^ 

The derivation of the complex coefficients from the definition of the 

vector inner product will now be done because it is inyortant for later 

work. The vector inner product given in Equation 10,5 is written with 

Equation 10.3 substituted for f(x,T) as 

1 * -k. 
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where the dunzny index k has replaced n. Interchanging summation and inte

gration and grouping the variables in x, we obtain the expression: 

1 +t/2 ̂  

The integral in (10.8) represents the vector inner product of the eigen

vectors or^ and but since these form an orthonormal basis set, their 

inner product is the Kronecker delta function. These steps are summarized 

as: 

The Kronecker delta operating on the inner product (a^,f) contracts to 

give the inner product (a^,f) and this was the original definition of the 

complex coefficients: 

I = (or ,f) = a (10.10) 
n ti n 

The derivation of the vector norm is shown in the same way by starting 

with the definition given in (10.6), Equation 10.3 is substituted for 

f(x,T) to give: 

- +T/2 += * 

( f , f )  = $ r S (or , f )  a  (X)  S (a ,f)o!. (x)dx (10.11) 
-T/2 ° ^ k=_® K tc 

Grouping variables in x and interchanging summation and integration gives: 

-H» * +T/2 * 
(f,f) = S (or ,f) 2 (a. ,f) $ J a (x)0L (x)dx (10.12) 

n=_oo n K i «^^2 ^ 

As before, the integral defines the vector inner product *hich 

reduces to the Kronecker delta to give: 
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4® * -h= ^ 
(f,f) = Z i a  , f )  I (a, ,f) 6 = Z (a ,f) (a ,f) (10.13) 

n=-cD n k=-= ^ n=-" ° ^ 

The vector inner products, (ot^jf), define the complex amplitude coefficients, 

a , and the final result becomes: 
n 

(f,f) = I a^a^ = Z |a^( (10.14) 
n=_oo n=-'=° 

These same equations which have been derived in Hilbert space notation 

will also be derived using the notation for Fourier series given in 

Appendix II. The physical and mathematical significance of these various 

quantities as related both to the Fourier series and Hilbert space vectors 

will be presented. 

A periodic function can be represented by a series expansion around 

some vector basis set. The conçlex representation of a Fourier series is 

one such expansion that can be written in the form: 

+® + j ~ nx 
f(x,T) = Z (a ,f)ff (x,T) = Zee ^ (10.15) 

n=-m n n=-= " 

The orthonormal basis set of eigenvectors for a Fouirier series expansion 

is defined by Equation 10.4. The con^lex expansion coefficients, a^, are 

represented by the Fourier complex asçlitudes, c^, and both are defined by 

the vector inner product, (Qf^,f), 

The vector inner product can be used to calculate the complex Fourier 

ang)litudes and also to sisçlify mathematical derivations involving Fourier 

series. It is this latter function that the author found very useful. To 

show that the complex amplitudes can be derived from the vector inner 

product of the eigenvector operating on the state function, we evaluate 
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the following integral: 

Idx (10.16) 

dx (10.17) 

+T/2 +j^(k-n) 
dx (10.18) 

The integral in (10.18) is recognized as one form of the Kronecker delta 

function discussed in Appendix II, Equation Â2.33. Replacing the integral 

with the Kronecker delta function, the contraction of 5^ and c^ gives the 

conçlex amplitudes: 

These conçlex anq^litudes are used to reconstruct the original time function, 

confute the average powet, and determine the discrete amplitude spectrum. 

The vector norm is used to determine the mean-square voltage or 

"average" power in the periodic time function. The vector norm is also an 

alternate representation of Parsaval's theorem. The derivation of the 

vector norm for a Fourier series is summarized below: 

+00 

<"n'« \ Vta ° 'n 
n=—«0 

(10.19) 

(10.21) 

(10.20) 

n=-® 
(10.22) 
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This expression for the vector norm can also be written in the more usual 

form; 

(f,f) = Z |c^r (10.23) 
n=-® 

Parseval's Theorem for Fourier transformable functions is given by 

(Cooper, 1971, p. 133): 

+T „ , ^ p 
J x^(t)dt = ̂  j lx(iD)rdcu (10.24) 
-T -00 

For a Fourier series it is (Thomas, 1969, p. 600): 

1 o ™ 7 2 1 9 
% a% + E (a^ + b^) = i J f^(t)dt= (f,f) (10.25) 
° n=l -T/2 

In Equation 10.25 the sin-cos expansion coefficients are used. If these 

are replaced by the ccmçlex coefficients, this expression is equivalent 

to the vector norm equation. To show this we expand the vector norm 

equation using (10.6) to give 

1 +T/2 - +" 
f^(x)dx = 2 Ic i (10.26) 

-T/2 n=-œ 

* 
where it is assumed that f (x) = f(x). 
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xi. spectral mixing formula. 

A bandiimited time function, x(t), with period can be exactly 

specified for all time by a Fourier series 

m 
x(t) = See _co<t<+oo (11.1) 

n=-M ^ 

with coup lex amplitudes ; 
.2TT ^ 

1 +tp/2 "j tp"" 
c = — r x(t)e dt (11.2) 

^ -t^/2 

The following quantities are defined; 

Tp = The period of x(t) which will be referred to as the 

Fourier period. 

OL = the Fourier frequency which is also the lowest possible 
t tp 

frequency conçonent in x(t). 

= The average or "dc" value of x(t). 

= The complex spectral anylitude of the n'^ frequency com

ponent corresponding to nu^. 

Mu^ = The hi^est frequency component in x(t). 

The conplex spectral amplitudes are specified by the integral of 

Equation 11.2 but this representation can only be used to develop the 

theory or when x(t) is specified as a mathematical function. For empirical 

data, the integral must be approximated numerically. Suppose we define a 

hypothetical experiment \^ere x(t) is sanpled at a rate exactly equal to 

the Nyquist rate and we assume that the total number of samples taken is 

sufficient to completely determine the comq)lex spectral ançlitudes, c^. 
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For these conditions, the sampling interval is defined as At = Tj,/(2M+1) 

and the total number of samples is 2H+1. This means that the function 

has been sampled for exactly one Fourier period. 

The conçlex amplitudes will be estimated by using a Riemann sum ap

proximation for the integral of Equation 11.2. This approximation can be 

written as follows (Appendix I, Part A): 

. 1 -m 
I = At Z x(kAt)e (11.3) 

F k=-N 

Since the total number of samples taken is 2M+1, there are a total of 

2M+ 1 segments to be summed. If the sanq>ling interval is replaced by, 

At = Tp/ (2M + 1), the Riemann approximation can be written as : 

Sx(kAt)e (11.4) 
^ ^ k=-m 

Does this Riemann sum approximation for estimating the complex ançlitudes 

give accurate estimates for these sampling conditions? This answer can be 

obtained by computing the vector inner product using the estimate. The 

The procedure is the same as that used to derive Equation 10.19. Substi

tuting Equation 11.1 for x(kAt) into (11.4) gives: 

k=-M L=-M 

This expression is modified by interchanging summation and combining the 

exponents to give: 

or by applying trignometric substitutions, the alteimate form is: 
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. -ttî 1 m -
\ ">"^5 (11-7) 

L=-pl k=l 

It has been determined that the quantities in the brackets represent the 

Kronecker delta function (Appendix II, Equations A2.36 and A2.37). To 

prove this, a computer program was written for the expression in brackets 

and this expression was evaluated for various combinations of the integers 

L and n. The double precision program showed that for integers restricted 

to (L - n) ̂2M, the representation is exact. This discovery was used to 

conclude that: 

In other words, when the time function is sampled in this very special way, 

the Riemann sum estimation for the integral gives the exact values of the 

conçlex spectral amplitudes. Hence, the digitally computed conçlex anq>li-

Eudes can be used in the series of Equation 11.1 to exactly reproduce the 

original continuous time function. 

Since the reproduction is exact for the continuous function, it is 

also exact for the sançled function, x(kAt). If Equation 11.4 is used as 

a definition for the conçlex amplitudes and Equation 11.1 is written in a 

discrete form, these two equations become a basis for the definition of a 

digital Fourier transform pair: 

x(kAt) = See (11.9) 
n=-M 

1 '  
= Z x(kAt)e (11.10) 

° k»-M 
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The digital Fourier series and the digital Fourier transform (Bergland, 

1969) have the same mathematical form. From the data processing viewpoint, 

they are equivalent. 

Discrete Fourier transform (DFT) routines including the fast Fourier 

transform (FFT) are designed to produce M independent frequency conçonents 

and a "dc" term from 2M+1 samples of a data function. If the ideal 

sançling conditions previously described are achieved, the DFT will give 

exact values for the c^. If these conditions are not achieved, it will give 

only an estimate. When the discrete transform is arbitrarily applied to 

2M+1 data values, the resulting discrete amplitude spectrum will be such 

that the data values can be exactly reproduced. For this reason, the 

transform pair given above is called an exact transform pair. In general 

an estimator for the conçlex amplitudes will not produce a series that will 

give back the exact data values. 

A mathematical examination of the effect of sampling on the estimation 

of a discrete amplitude spectrum has led to the development of the author's 

spectre 1 mi-g-tng formula. In this derivation, the vector inner product was 

used to define the conçlex asçlitudes and a Riemann sum was used to approx

imate the integral in (11.2). The goal of this analysis was to determine 

the effect of sampling interval and number of saag)les on the accuracy of 

the estimate. 

Suppose a time function ̂ Aich can be exactly specified by Equations 

11.1 and 11.2 is sampled over an arbitrary observation interval, T^. It is 

assumed that the observer is unaware of the exact value of the Fourier 

period, T_. It is also assumed that there are 2N + 1 samples in the interval 
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and that the arbitrary sampling interval is At. 

First, we define an estimated amplitude spectral function as the dig

ital Fourier transform of the time series {x(kAt) : k = 0, + 1,  + 2,  . . . ,  +N}: 

4n 
= at y. x(kat)e"iwkat (11.11) 

k=-N 

It should be noted that this estimate produces a continuous function of eu 

despite the fact that x(kAt) is discrete. The continuous nature of X(uj) is 

a result of the definition of the estimation procedure. In some cases, 

this continuous estimate can be exploited to produce better results than a 

discrete estimate. 

Second, the complex spectral amplitudes associated with the time series 

above are defined to be: 

• 1 -j-^nkat 
c = — At S x(kAt)e N 

- ^ k=-N 

1 '^w+1^ 
= 7̂ 1  ̂x(kat)e (11.12) 

k=-N 

These conçlex ançlitudes are related to the estimated amplitude spectral 

function for x(kAt) as follows: 

c = ̂  ̂(|̂  n) T =(2N+l)At (11.13) 

In other words, c^ is obtained from X(u)) by sampling at intervals corres

ponding to u)^=2Tm/Tjj and dividing by the observation interval. Before 

continuing with the derivation, the following observations about the esti

mation process should be made: 
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as 
1. Under very special circumstances the c^ are exactly equal to the 

"true" conçlex amplitudes, c^, and hence can be used to generate 

the continuous time function x(t) from the samples x(k^t). 

2. For any given data set {x(kAt) : k=0, + l,+2, +N}, the esti

mated coefficients c^ specify a Fourier series given by 

A A +j|^nt 
x(t) = See N (11.14) 

n=-N ^ 

which is periodic with period and which exactly reproduces the 

sample values x(kAt). From this we realize that x(t) and x(c) are 

equal at the times t = k^t but, in general, are unequal everywhere 

else in the time domain. For this reason it is concluded that 

there are an infinite number of x(t) functions which will fit a 

discrete data set. Any particular x(t) is completely specified 

by the sampling interval At and the total number of sasçles, 

2N + 1. The desired goal of the estimation scheme is to obtain 

x(t) and its as$>litude spectral estimate as close as possible to 

x(t) and ̂ {x(t) }, 

3. For 2N + 1 samples of x(t) there are 2N+1 values of c^ computed 

in a digital Fourier analysis scheme. In the "true" spectrum 

there are 2M+1 coefficients. This means that for overs amp ling 

there may be many more estimated coefficients than "true" co

efficients while undersampling produces just the opposite. 

We now proceed to derive the spectral mixing formula. For conven

ience, a continuous complex spectral amplitude estimate will be defined as: 
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èiw) = -S—"! ? (11.15) 
^ ̂ k=-N 

where At = T^/ (2N +1). This continuous function gives the discrete coef

ficients \^en sasçled at intervals corresponding to n^(j)=~ n. 

To determine the accuracy of this spectral estimator it is convenient 

to conçare the "true" complex amplitudes with the estimate: This say be 

done by evaluating the vector inner product using the estimator. Substi

tuting the "true" Fourier series given by (11.1) into Equation 11.15 gives 

the following estimate in terms of the "true" amplitude coefficients: 

f (11.16) 
^ k=-N L=-M ^ 

This equation can be manipulated into the form; 

K*-N 

Using trigonometric substitutions it can also be written as: 

a 1 n t» 
C(U)) = + 2 J^cos(Lu^-W)k âîTl^^ (11.18) 

= S c_ f(L(iL-w) (11.19) 
l=-m ̂  ^ 

Equation 11.18 is one form of the spectral mixing fonaila. In this 

form, it describes the mixing effect of saaçling on the continuous complex 

spectral amplitude estimate. In another form it will be used to describe 

the spectral mixing effect for the discrete spectral asçlitudes, c^. The 

quantity in brackets has a very special significance and will be represented 



www.manaraa.com

121 

by 6(Lu^-ai). As far as the author is aware, this concept has not been 

previously developed. It will be called the estimated Kronecker delta 

function because ̂ en it is used to describe the discrete case, its func

tional behavior is similar to a Kronecker delta function. It could also 

reasonably be called a Dirac delta function except its amplitude is nor

malized to unity and it is primarily used in estimating the spectral ampli

tudes in the discrete function. 

The estimated spectral function at any particular frequency is com

posed of the sum of all the "real" conçonents after they have been weighted 

by the estimated Kronecker delta function. In many ways this weighting 

can be thought of as a convolution of the discrete spectrum with the esti

mated delta function. This viewpoint suggests an analogy between this 

process and the convolution with a window function as encountered in the 

Blackman-Tukey method. The concept of an estimated Kronecker delta func

tion can be applied to other spectral estimators. The one derived here is 

valid only for the Riemann sum approximation. 

The "filtering" effect of the estimated Kronecker delta function is 

shown with the help of Figure 11-1. The delta function becomes "peaked" 

about a frequency corresponding to u}=Lu^. This weighting tends to "sift 

out" the discrete an^litude corresponding to the observed frequency, uu, 

and deemphasize the other ccs^onents. When the amount of observed data 

becomes large, the estimated Kronecker delta function converges to the 

"true" function. When the hypothetical sampling circumstances described 

earlier are achieved, the estimate becomes exact. 
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Figure 11-1. A Plot of the Estimated Kronecker Delta 
Function Showing the Filtering Effect 
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The spectral mixing formula for the discrete spectral amplitudes is 

obtained by sanpling the continuous complex spectral amplitude estimator 

at frequencies corresponding to nAci)=^ n. The resulting equation is: 

The estimated discrete complex amplitudes are the same as those that would 

be calculated by the discrete Fourier transform. If the observation inter

val and the Fourier period are equal, Tp = T^, the estimate is exact. 

The discrete form of the spectral mixing formula relates the "true" 

spectral amplitudes, c^, to the estimated amplitudes, c^, for any given 

set of gangling conditions. The parameters of the sampler are the total 

number of samples, 2N + 1, the observation interval, T^, and the sampling 

h 
interval, At = 2^ + 1" parameters of the input signal are the Fourier 

period, T„, and the con^lex ançlitudes, c . The effect of changes in the 

sampling parameters can be studied by using the mixing formula. 

More research needs to be done to further develop the mixing formula 

into an analytical tool. Since it relates the estimated coefficients to 

the "true" coefficients, it seems possible that an algorithm can be de

veloped that will improve the spectral estimate by "unmixing" the mixing 

effect. This procedure would involve an optimal search for the Fourier 

period by some appropriate criterion placed on the resulting spectrum. 

Such a routine has not been worked out by the author but some pre

liminary ideas were developed. These ideas are generally expressed in 

Hilbert space notation and euçloy some assusçtions that have not been 

shown to be valid. 
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The basic problem will now be formulated. Suppose an observed x(t) 

is recorded for a time but it is assumed that the Fourier period is 

unknown. Using Hilbert space representations, suppose that the "direction" 

of the vector is changed until some "optimum" direction is found that gives 

as "best" estimate of the time series. This analysis would produce a 

period T^^ which would approximate the Fourier period and coiq)lex coef

ficients based upon the desired criteria. 

The state vector of the system is defined as the infinite series: 

«"•v =Ji (11.21) 

It will be assumed that an operator, Â, exists which will yield an 

"optimum" time series when operating on ijf. A second assunçtion, based 

upon intuition and the need for a suitable criterion of goodness, is that 

the "optimum" period is the one which concentrates the spectral power into 

the fewest possible spectral conponents. This a priori assun^tion is, in 

effect, forcing the estimate to agree with the enmirical data by approx

imating the data with the "least conçlicated" spectrum. To formulate this 

idea, we normalize the complex amplitudes such that the vector norm is 

unity: 

+® , 

z |c^r = 1 (11.22) 
n=-oo 

The entropy measure for the spectrum will be defined as: 

+® 

H = - Z |c^|log|c^| (11.23) 
n=-® 
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To produce the fewest possible spectral con^onents, we will want to min

imize the entropy, H. The problem can be sumuarized as trying to find an 

A  
operator. A, which operates on to yield an "optimum" time series, 

f(XjT^p^), which is the best estimate of the observed time series. The 

constraint for this optimization is that the entropy is minimized. Time 

did not permit the author to develop the details of this analysis or even 

to prove the basic assumptions. For the reader interested in developing 

this idea further, the author recommends using a calculus of variations 

with constraints. One example of this type of procedure has been given in 

Appendix I, Part J. 

Examples of the use of the spectral mixing formula and a further 

discussion of the use of the digital Fourier transform for the spectral 

analysis of finite time series will be presented in Chapter XII. 
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XII. FOURIER TRANSFORM SPECTRAL ESTIMATION 

A. Infinite Periodic Time Functions 

A sample record of an infinite periodic time function with period T^ 

is shown in Figure 12A-1. It is assumed that the function is bandlimited 

and that it can be characterized by 2M+1 complex amplitudes. 

Figure 12A-1. A Sample Record of an Infinite 
Periodic Time Function with Period T^ 

This bandlimited function can be exactly specified for all time by a 

complex Fourier series 

+M +j ̂  nt 
x(t) = Z ce ^ 

n=-M * 
-00^ t 3+= (12A.1) 

with complex amplitudes: 

+tp/2 

n T. 
x(t)e 

- 2tt 
•J T- nt 

dt -m^n^-w 
r -ip/2 

(12A.2) 

The following quantities are defined: 
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Tp = The period of x(t) referred to as the Fourier period. 

(tU = ̂  , the Fourier frequency, also the lowest frequency com-
F 

ponent in x(t). 

c^ = The average value of x(t). 

c^ = The complex spectral amplitude or Fourier coefficient cor

responding to the n^^ frequency component, ni 

Mu^ = The highest frequency conçonent in x(t). 

The actual number of complex amplitudes that are needed to describe a 

particular x(t) can be very deceiving. In a practical situation it may 

take hundreds of c^'s to characterize x(t) but many times only a few of 

them are nonzero. 

1. Fourier analysis 

The Fourier analysis of an infinite periodic function consists of 

determining the con^lex ançlitudes, c^, and the amplitude spectrum, X(u). 

The complex ass>litudes are determined from Equation 12Â.2 and the ançli-

tude spectral function is the Fourier transform of x(t): 

The expression in brackets is recognized as a form of the Dirac delta 

function (Appendix II, Part E) and the final result is: 

e+j(a%-w)t 
(12A.3) 

(12A.4) 



www.manaraa.com

128 

The use of a delta function allows for the existence and definition of 

the amplitude spectrum of an infinite periodic time function. 

2. Autocorrelation function 

By applying the definition given in Appendix I for a time autocor

relation function and using Equation 12.1 for x(t), the time autocorrela

tion function for an infinite periodic time function is easily determined 

to be: 

"^1 i2 
R (T) = 2 |c Te (12A.5a) 
^ n=-M ^ 

. M 2 
= |c^r4-2^Z^ lcj^rcos(ku^T) (12A.5b) 

R^(t) has an average value of jc^J^ and is periodic with period Tp. 

3. Power spectral density function 

The power spectral density function for an infinite periodic time 

function is determined by taking the Fourier transform of the time auto

correlation function: 

z I 
n=-M 

-r .2 
j{\(T)} = S^(cu) = S jc^r 2TT6(nci^-cu) (12A.6) 

For this ideal condition, the amplitude spectrum and power spectrum both 

consist of 2M+1 line components of amplitude c^ and jc^J^ respectively. 

They both give essentially the same spectral information about x(t). 

4. Total spectral power 

The total power in the spectrum of x(t) is obtained by integrating 

the power spectral density function over all frequency: 
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Total Power = ̂  J S (uu)dm = Z |c (12A.7) 
ail uu * n=-M ^ 

The total power is also obtained by evaluating the time autocorrelation 

function at zero lag: 

4m 2 
Total Power = R (0) = Z |c | (12A.8) 

* n=-M ^ 

5. Vector norm 

The vector norm is used to determine the mean-square voltage or 

"average" power in the periodic time function. It is also a particular 

form of Earseval's Theorem. For the con^lex Fourier series it is given by 

+r /2 * 4m 
Average Power = — T x (t)x(t)dt = Z |c | (12A.9) 

^F -Tp/2 n=-M " 

From this representation we see that the total power in the frequency 

spectrum is determined by the mean-square value of x(t) averaged over one 

Fourier period. 

6. Ideal sampling 

If x(t) is sasçled by an ideal sandier and at a rate exceeding the 

Nyquist rate (see Chapter VI), the sappled function can be exactly recon

structed using the following infinite orthonormal series: 

4-* sin ̂ (t - kAt) 
x(t) = S x(kAt) ] (12A.10) 

k«-® Tr(t - kût) 
ût 

This formula can be used for exact interpolation between saapled values 

provided the sangiling interval is less than the Nyquist sampling interval. 
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B. Finite Periodic Time Functions 

The infinite periodic time function x(t) is now observed for a finite 

time, as illustrated in Figure 12B-1. It will be assumed that the 

observer is unaware of the exact value of the Fourier period, T^. Although 

x(t) 

Figure 12B-1. Truncated Time Sample of an 
Infinite Periodic Time Function 

x(t) is infinite, a truncated time function can be defined using a rec

tangular observation window function such that 

x(t) = u(t)x(t) (12B.1) 

where 

or: 

1 t ^t^t +T„ 
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For purposes of presentation, the origin in Figure 12B-1 will be shifted 

so that t^ = -Tjj/2 and the sanq)le length is symmetrical about the vertical 

axis. 

1. Fourier analysis 

Since the truncated function is absolutely integrable, 

^ +t / 2 
J |x(t) |dt = j" |x(t) |dt <= (12B.4) 
-00 -t /2 

N 

the amplitude spectral function exists and is obtained by taking the 

following Fourier transform: 

^(m) = = r " (12B.5) 
-1̂ /2 

If x(t) in the above integral is replaced by Equation 12A,1 and the inte

gration performed; the resulting estimated amplitude spectral density 

becomes : 

4M sin(nuL - #1/2 

'A' C—(SÇTiSy ̂  

As the observation interval becomes very large, this estimate con

verges to the "true" an^litude spectral density given in Equation 12Â.4: 

lim X(ti)) = S c 2tt 6(niiL-U)) (12B.7) 
T -œ n=-M ° ^ 
n 

The interested reader can verify this limit by applying Equation A2.49 

given in Appendix II. 
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For the very special circumstances where the period of observation, 

Tjj, is an exact multiple of the Fourier period, = qT^, and if we are 

interested only in the amplitude spectrum sampled at multiples of the 

Fourier frequency, u^ = 2tt/TJ,, we get: 

n=-M 

The sine function in the brackets is actually a special form of the 

Kronecker delta function given in Appendix II. Replacing the sine function 

with the Kronecker delta and using the contraction property gives: 

a ^ 
X(kii^) = qTj. 2 c^6^ = qTpC^ (12B.9) 

n=-M 

From this derivation we can see that, for these special circumstances, 

the complex spectral an^litudes can be exactly confuted from the sangles 

of ̂ (oi) by: 

^ 2^(nu^) (12B.10) 

This special relationship between the complex amplitudes, c^, and sample 

values of the estimated amplitude spectral function, X(u}), suggests a 

curious interpretation for Equation 12B.6. Except for a scale factor, T^, 

this equation is identical in form to the reconstruction equation (6D.6) 

discussed in Chapter VI. From this it is concluded that the amplitude 

spectral function for a truncated continuous time function can be obtained 

by a series expansion involving the "true" conçlex coefficients and an 

appropriate orthomormal sine function. 
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For a periodic time function, the ançlitude spectral function can 

also be computed by applying the convolution theorem: 

The Fourier transform of the rectangular window function is a sine function 

and X(uu) is given by Equation 12A.4. The convolution of the sine function 

with a series of Dirae delta functions gives the same series as Equation 

12B.6. This convolution technique cannot generally be applied if x(t) has 

any random conçonents because X(uj) may not exist. The approach to use for 

random functions is discussed in Fart C of this chapter. 

2. Estimated autocorrelation function 

There are two possible definitions for the estimated time autocorrela

tion function, The first definition Is valid for lag values much 

smaller than the observation period, T«T^. This definition is consis

tent with the usual assumptions applied In the Blackman-Tukey method: 

x(t) = u(t) x(t) (IZB.lla) 

AuO = u(ui) *x(u}) (12B.llb) 

J X (t)x(t+ T)dt (12B.12) 

This definition also yields the simplest results 

(12B.13) 
k=-m l=-m 

(12B.14) 

where 
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\l ' VL 

, ,  ,  N N 
sinTT (k - l)— 

(12B.15) 

f 

and 

 ̂V-m 
(12B.16) 

The ançlitude constants, in Equation 12B.14 play the same role as the 

correlation function for the truncated time function is no more complicated 

than that for the infinite case. The very definite difference between the 

two is that the estimated autocorrelation is itself a random function. As 

the window function moves with respect to x(t), it gives different sample 

realizations and thus generates a randomness in T) . This randomness is 

a direct result of the observation and sampling process. 

If the period of observation is again an exact multiple of the Fourier 

period (as in Equation 12B.8), the sine function reduces to a Kronecker 

delta and the conçlex ançlltudes reduce to 

amplitude constants, |c^|^, in Equation 12A.5. In this sense, the auto-

(12B.17) 

and: 

(12B.18) 

The net result is that the estimated autocorrelation function is identical 

to the "true" function for these sampling conditions: 
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•m „ +jkci^t 
R (T) = E k I e = R (T) (12B.19) 

k=-M ^ * 

The second definition for the estimated time autocorrelation function 

is the one which will converge to the "true" function and hence is not 

biased. It is also valid for all lag values, jr] <T^. This estimate is 

more complicated than the previous one and does not lend itself to an 

easy interpretation. The estimate we will work with is given by: 

a 1 - 1^1)* 
R ^ ( T )  =  ^  ,  1^1 J  . X (t-T/2)x(t+ T/2)dt (12B.20) 

1 T | )  

This autocorrelation estimate can be expressed in terms of the complex 

Fourier coefficients by replacing the x(t)'s with Equation 12A.1 and doing 

the integration. After many detailed algebraic manipulations we obtain 

n=-M " 

4M m ̂ +jUL(k + L) T/2 
+ S Sc^cq (T)e (12B.21) 
k=-M L=-M ̂  

k̂ l 

where: 

1"^!) +ju, (L-k)t 

W) = I e ^ dt (12B.22) 

sin[| - k) (Tjj - Irj)] 

y %(l-k)(t^- !t1) 
(12B.23) 

The function q^(T) is even and represented by two sine functions i^ch are 
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mirror images of each other. Attençts at further analysis of q^(T) have 

not been successful. The Fourier transform of q(T) involves a sine inte

gral. For q^(T) reduces to the sine function in Equation 

12B.15 and the two estimates agree. 

3. Estimated power spectral density function 

For the autocorrelation estimate given by Equation 12B.12, the es

timated power spectral density function is 

-hh 
z 

n=-M 

where 

^(u)) = 9" } = s 3^2tt6(nu^ - u)) (12B.24) 

^ * 
6 = S c, c 
" k=-m 

sinn(k-n);^ 

x 

Tr(k - n)^ 

F J 

(12B.25) 

and again if is aa exact multiple of Tp, the amplitude coefficient 

sinçlifies to = |c^|^. 

For the autocorrelation estimate given by Equation 12B.21, the power 

spectral density function involves the Fourier transform of q^^ ( T) which 

has not been determined. This estimate may be written as: 

^(w) = z |c^| 2tt6(nu^-cu) 
n=-M 

+jllU(k + L)T/2 

jm 
} (12B.26) 
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4. Total power estimate 

The total spectral power for each estimate is obtained by integrating 

the spectral density over all frequency. This gives for )%] «T^, 

1 4M 
Total Power = ô" J S (cu)d'ju = z g (12B.27) 

-® n=-M ^ 

and for all It] <1^^: 

4M 2 
Total Power = Z |c | 

n=-M ° 

4M * 1 4-ju^(k4-L)T/2 

WL (12B.28) 

It can be shown that the sum in Equation 12B.27 is positive and real. 

5. Vector norm 

The vector norm or Parseval's Theorem for the truncated function is 

similar in form to that for the infinite periodic time function. The 

major differences are that the mean-square value is averaged over the ob

servation interval and not over the Fourier period and the amplitudes, 

|c^|^, are replaced by the an^litudes, The approximation to Parseval's 

Theorem becomes: 

4M - 4s= 

— r X (t)x(t)dt = S pt, ~ 9^ i s (cu)diju (12B.29) 
% -T^/2 n=-M ® -= ^ 

6. Frequency resolution and spectral mixing 

The ability to resolve line spectra and avoid false spectral peaks is 

of great concern when doing hi^ resolution spectral analysis of periodic 
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signals. These topics can be studied by assuming a reasonable model for 

the spectrum of a periodic signal and then doing Fourier spectral analysis 

on the model. A convenient spectral model is shown in Figure 12B-2. The 

x(u)) 
I 

1 

1 

1 1 

0 
^2 ^b 

Figure 12B-2. A Convenient Spectral Model 
for Resolution Studies 

periodic time function can be modeled by a Fourier series of four terms: 

x(t) = A^ cos (2Trf^t+ 0^) + A^ cos (2Trf^t + 

+ A^ cos (2TTf J^t + 0^) + A^ cos (2TTf^t + 0^) (12B.30) 

A confie te Fourier series representation would involve determining integers, 

m, and a Fourier period T^ such that; 

«a = °a ̂  

(123.31) 
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The time function would then be modeled by a Fourier series such as in 

Equation 12A.1 where many of the complex amplitudes would be zero. 

To be able to conpute a Fourier series for the periodic waveform 

requires a knowledge of the Fourier period, T^. If this is not known, it 

is difficult to determine the integers m^, m^, m^, and m^. 

The time autocorrelation function for an infinite record of x(t) is 

cong>uted using Equation 12Â.5 as: 

R^(t) = Y cos (Zrif^T) + Y cos (ZTrf^T) 

+ I cos (ZTTf^T) + I cos (2TTf2T) (12B.32) 

If the infinite autocorrelation function were now truncated it would be a 

straightforward matter to use a lag window function and continue the 

analysis. The data function, however, is terminated with a data window 

and this complicates the analysis considerably. The estimated autocor

relation function should be coiq>uted using Equation 12B.21. 

The conq^ilicated mathematical analysis of the estimated autocorrelation 

function will not be presented. Even the simple exanple of a single sine-

wave burst discussed in Part 7 of this section involves a considerable 

amount of mathematical manipulation. Further spectral analysis for this 

section will be done using the amplitude spectral function. 

The amplitude spectral function for the infinite time function is 

confuted using Equation 12Â.4. For the four term series this becomes: 

X(ui) = TT A^Ce^^^®6(cu^+(u) + e - cu) ] 

+ TT Aj^[e^"^^6(ai^+uo) + e - U))] 
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+ TT A^[e''"^^l6(u:ij^ +ou)+e'^^6(uJj^ - U)) ] 

+ TT + uj) +e ̂ *^6(0^-0;)] (12B.33) 

We can say that infinite spectral resolution has been achieved in Equation 

12B.33 because of the Dirac delta functions. For a finite observation 

period, the spectral resolution becomes finite. 

For mathematical convenience, the finite time function can be thought 

of as the infinite time function being observed through a finite data 

window. We write the observed function as the product of a rectangular 

window function and the infinite time function as: 

The rectangular window function was defined in Equations 12B.2 and 12B.11. 

The anplitude spectral function for x(t) can be obtained from the convolu

tion of the Fourier transforms of u(t) and x(t). The relationship is: 

The Fourier transform of a rectangular window function with unity height 

and width is: 

sin rn— 

x(t) = u(t)x(t) (12B.34) 

J U(U)- X)X(X)dX (12B.35) 

(12B.36) 

The convolution integral is evaluated using (12B.33) and (12B.36) to give: 
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^ sin ({i Sin (cu +(u) -5- sin (u) - uu) t-
^ ^ ^ ^ ] 
cu) (u)^ - cu) 

tjj 
sin (ui +u))'5— sin (ui - id) :r-

+ V ^ + ... -... ' ] (u^+cu) (1% - uj) 

t t 
sin(UL + U)) -s— sin (ui - (ii)%— 

+ \[ ^ + —, 2 .  J ] 
(a)j^ + la) (uij^ - uu) 

t t 
sin (u^ + uu)— sin (u^ - uu)— 

^ ̂2^ (u^ + tu) (u^-uu) ^ (12B.37) 

The phase factors have all been omitted for simplicity because we are only 

interested in the amplitude of the spectral function. 

The spectral estimate above becomes exact when the observation inter

val goes to infinity because the sine functions converge to Dirac delta 

functions. This is illustrated in Equation A2.49 in Appendix II, A 

typical spectral term in the estimator is represented by: 

' = \ r 

sin (tt)^ - U)) — 

(00^- cd) y" 

(12B.38) 

The "spread" or width of this spectral component is characterized by the 

width between first nulls of the sine function. 

bandwidth-between-first-nulls = 
4TT 

(12B.39a) 

or by the bandwidth between the points \riiere the amplitude is down by a 

factor of (2)^: 

BW. 
3dB 

16TT 
9t^ 

(12B.39b) 
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If we were to do a Fourier series analysis of x(t) and we knew the 

exact Fourier period we could set the observation interval equal to Tp 

and obtain an exact answer. This criterion of observation can be applied 

to the Fourier transform to determine the spectral resolution. If = T^, 

and we examine the typical frequency conçonent at the period of obser

vation can be replaced by 

m 

(12B.40) 

where m^ is one of the integers discussed for Equation 12B.31. When this 

is substituted into Equation 12B.37, the result becomes : 

m 

m sin (2TTf^-2TTf) ̂  

^ = ̂ 2# [ 

(2TTf^ - 2TTf) 

(12B.41) 

The ratio m^/f^ is multiplied through and, the sin term reduced to give: 

^ = A, 

sin [-TT m (1 -%-)] 
^ =a 

2TT(f-f^) 
(12B.42) 

The amplitude of the typical spectral cooçonent is evaluated by 

taking the limit: 

m 
l im 6 -
I "• r _ a 

(12B.43) 

The bandwidth-between-first-nulls is 

2m 

a a 
(12B.44) 

and the 3dB bandwidth is: 
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siu 

»^3db = gt (12b.45) 
a 

At this point a resolution quality factor or "Q" could be defined as: 

*a 
qa = = r (125.46) 

We are now able to draw several conclusions from this example. First, 

if the Fourier period is exactly known, the Fourier series technique gives 

infinite spectral resolution. Second, the width of a typical spectral 

component in the Fourier transform is directly related to the frequency, 

f^, of the spectral conçonent and the number of cycles, that particular 

conçonent has been observed. The spectral bandwidth in percent of the 

observed frequency is directly related to m^, the number of cycles observed. 

Third, for a given observation period, the higher frequencies will get the 

better percentage resolution because more cycles have been observed. This 

results in a hi^er "Q". 

The spectral resolution for the frequency canponents and can be 

determined by examining the ançlitude spectrum near these frequencies: 

sin (ciL - uu) r-

sin (uk - (b) ̂  

+ ̂  ai> ] (^-47) 

Since and are nearly equal, the two spectral conponents have approx

imately the same spectral bandwidth. For equal amplitude spectra we de

fine the Rayleigh resolution as one-half the bandwidth-between-first-nulls : 
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Rayleigh resolution = j AUL = (12B.48) 
n n 

Using this criterion, the two spectral peaks are just resolved. For the 

case where the observation period, is equal to the Fourier period, T^, 

the Rayleigh resolution is: 

c12b.49) 

Again we see that the more cycles observed, the better the resolution. 

We will also define a Fourier resolution as equal to the bandwidth-between-

first-nulls: 

Att 
Fourier resolution » = — (12B.50) 

n 

For this spectral separation we say that the spectral components are com

pletely resolved. 

The resolution criterion must take into account differences in spectral 

amplitudes because a large component near a small one may obscure the 

identity of the smaller component. A criterion is difficult to establish 

for dissimilar amplitudes. The "leakage" of spectral power from the large 

conçonent onto the frequency of a smaller component can be fairly well-de

fined. For a Fourier resolution criterion we will say that a conçonent 

has been resolved if the estimated spectral amplitude is larger than twice 

the amplitude of the leakage spectra. In terms of the example, this means 

that: 

. sin(au^) Y-
>2A^ [ ^ ] (12B.51) 



www.manaraa.com

145 

The criteria used to select an appropriate observation interval will 

now be summarized. First, to resolve the lowest frequency conçonent, f^, 

the number of cycles to be observed depends upon the absolute frequency 

and the desired bandwidth between first nulls: 

2f 
# of cycles observed = m = (12B.52) 

The needed observation length for distinguishing the lowest spectral com

ponent from zero frequency is obtained by equating one-half of the band

width-between-first-nulls to f^. This gives, m^ = 4. Second, to resolve 

two closely spaced sinewaves by the Fourier resolution criterion requires 

an observation period of: 

(m.53) 

Third, to determine the observation period required to resolve the band

width, fy- f^, into increments of frequency resolution it is necessary 

to compute the bandwidth-between-first-nulls as the ratio of the total 

bandwidth to the total number of increments. This is used in (12B.53) to 

give: 

T^> (123.54) 

7. Sinewave burst spectral analysis 

In somewhat of a digression from the material in the previous section, 

we consider a single frequency sinewave observed throu^ a data window of 

width, T^. The phase of the sinewave with respect to the origin of the 

data window is arbitrary and contributes a random aspect to the sampling 
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observation. The observed function illustrated in Figure 12B-3 is some

times referred to as a sinewave burst. The infinite cosinusoid is ex

pressed in the phase angle representation as 

x(t) = Acos (oD^t + 0^) (12B.55) 

with amplitude spectrum, time autocorrelation function, and power spectrum 

respectively: 

X(uj) = TT A[e'^^^06(u^+ m) + e'^'^os(u)^ - uu) ] (12B.56) 

f cos u^T (12B.57) 

P^(UJ) = ̂  A^[6(u^+ uu) + 5(u^ - tu)] (12B.58) 

x(t) 
Data "window" 

A --

x(t) 
+T„/2 •T„/2 

Figure 12B-3. Sinewave Burst or Single-Frequency 
Sinewave Observed Through a Data 
Window 
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For the Fourier spectral analysis of a sinewave burst of arbitrary 

reference phase, we can model the observed function as the product of a 

rectangular window function and the infinite time function: 

x(t) = u(t)x(t) = u(t)A cos ((i^t + ̂^) (12B.59) 

The rectangular window function u(t) was defined in Equations 12B.2 and 

12B.11. The anqjlitude spectrum of x(t) is obtained from the convolution 

of the Fourier transforms of u(t) and x(t). The relationship is: 

A 1 +" 
x((JU) = 2^ J D(u)-X)X(X)dX (12B.60) 

-CD 

The Fourier transform of the rectangular window function is 

sincur^ 
U(tl)) = Tjj [ (12B.61) 

*"2 

and the convolution integral becomes: 

This is the familiar amplitude spectral function previously presented in 

Equation 12B.37. The sinewave burst may be effectively analyzed with this 

function. If one applies the autocorrelation concept to the sinewave burst 

in an atteng)t to obtain the power spectral density function, the mathe

matics becomes very cœçlicated. 

For the sinewave burst, the estimated time autocorrelation function 

can be computed using either the definition in Equation 12B.20 and inte
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grating directly or by applying Equation 12B.21. For this discussion we 

will apply Equation 12B.21 to demonstrate its usefulness to the reader. 

In conçlex notation, the sinewave is written as 

x(t) = c_e + c^e^^(12B.63) 

where (see Appendix II): 

c_ = "I A e c^ = Y A e^^^o (12B.64) 

Applying (12B.21) we get 

+ c*c^q_^(T) + c*c_q^(T) (12B.65) 

with: 

1t|) 
= 9+.(t) iti) (12b.66) 

Sinçlifying teirms and adding we can obtain the estimated time autocor

relation function for the sinewave burst as a function of both lag and 

observation period 

=i^^cos u^t 

1 2 sinu) (T - 1T|) 
+ 2^ cos 20^ (12B. 67) 

where it must always be remembered that the lag must be less than the 

observation period, j*rj<Tjj, and that the autocorrelation is zero for lags 

larger than T^. 
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r^(t,TJJ) is really a function, of the random variable, 0^, introduced by 

the randomness of observation. The expectation value of the estimate is: 

e{R^(t,TJ^)} = R^(t) |t|<T^ (123.68) 

The last term in (12B.67) is the direct result of not having an infinite 

record to average over time and thus represents a distortion in the auto

correlation function obtained for an infinite sinewave. We now examine 

R^(t,TJJ) to determine the effect and seriousness of the distortion. 

The two terms of the sum in (12B.67) are plotted in Figure 12B-4. 

The most serious distortion of the ideal cosinusoidal shape of the auto

correlation function occurs within a distance, T^, of the observation 

interval, T^. For small observation intervals, the sine function will 

"mask" the identity of the sinusoid. For large observation intervals, 

the effect of the added sine function is reduced to a small percentage. 

We will look at two limiting conditions for ]^(T,T^) and compute the 

limiting effect on the amplitude estimate and the spectral estimate. For 

lag values much smaller than the observation interval and for an observa

tion interval much larger than the period of the cosinusoid; 

.  1  o  | T | « T  
5 (T,T„) =-7 cos CD T = R (T) ^ (12B.69) 
X N Z OX T »T 

N o 

This result is expected because we want the estimate to converge and be 

unbiased for large observation intervals. Next we look at the estimate 

of the total power because it Is used to obtain the estimate for the 

mean-square value of the cosinusoid which is in turn used to estimate the 

amplitude, A. For zero lag, the total power estimate is: 
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cos eu T 

t a' 

+T, 

sine 

A cos 2 0 

+t 

Figure 12B-4^ Two Components for the Estimated 
Autocorrelation Function of a Sinewave 
Burst 
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A 12 sin uu T 
Total Power = R (0,T ) = T A [1 + cos 28 ——= ] 

X w z O 
(12B.70) 

A plot of this function is shown in Figure 12B-5 to illustrate how the 

total power estimate converges as the observation interval increases. 

^(o.v 

bsolute Error Bound 

Figure 12B-5. Convergence Function for the Total 
Power Estimate of a Sinewave Burst 

The mariminn error in total power is 2 or a factor of 3 db. The absolute 

percentage error for worst case phase and frequency is obtained by 

evaluating: 

i a^cl ± (12b.71) 

^ "b N 
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Table 12B-1 shows the observation interval as some multiple of the period 

T^ and the resulting percentage error in total power. It must be re

membered that these are absolute worst case values and actual results may 

be considerably better for observation periods exceeding T^. Also, the 

randomness of the initial phase of the cosinusoid will have the effect of 

producing a randomness in the estimate. 

Table 12B-1. Percentage Anç>litude Error as a Function of Observation Inter
val 

Observation Interval Percentage Error 

& = 1-59 To 

T„ = 3.18T 
N o 
T„ = 15.9T 
N o 
T„ = 159T 
N o 

+ 10% 

± 5% 

± 1% 

+ 0.1% 

The Fourier transform of R^(t,TJJ) is used to obtain an estimate of the 

po'ver spectral density function for the sinewave burst. The power spec

trum can be represented by two conçonents 

Cê^(T,y } = S^(œ) +§'2(w) (125.72) 

^ere the integrals over the interval + become: 

S^(cu) = ~ j*. cos uu^Te'^^^dT (12B.73) 
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1  . 2  . . . "  - i t  
^(m) =2 A cos 20^ J —e'^'^dr (12B.74) 

"^n ^ 

The analysis could be continued using these definitions but much more in

sight into the processing problem can be gained by introducing a lag 

window function, D(T,T^). A plot of the estimated autocorrelation function 

showing the application of a rectangular window function is shown in Figure 

12B-6. The estimated power spectral density function becomes 

(12B.75) 

where: 

s^(uj) = Y A^ j" cos cu^Te'^'^dT (12B.76) 

= i cos ; '' |!|f (12b-77) o j W 

-?1 

These estimates will converge to those in (12B.73) and (12B,74) \rfien 

Tj^-»Tjj. Since both parts of R^(T,T^) are even, the cosine transform can 

be applied to give: 

a 

. _ sin(u) - u))T sin(uj +uj)T 

,  , 2 sinm |t1) 
Sj<oi) = f cos 2̂  ̂ J- |t|) cos ujrdT (12B.79) 
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+T. -T 

+T, 

Figure 12B-6. A Rectangular Lag Window Function Applied to 
Estimated Autocorrelation Function of a Sine-

wave Burst. 
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These two spectral components must be analyzed to determine the accuracy 

of the estimate. The component is exactly what would be obtained 

from applying a rectangular window function to an infinite autocorrelation 

function obtained from an infinite time function. In this sense, S^(u)) 

represents the "true" spectrum obtained by a finite observation. The 

component represents the additional spectrum generated because the 

time function was truncated before the autocorrelation function was 

computed. 

A 
The expression for S^Coi) given in (12B.79) could not be integrated 

directly because an analysis of the integral by a change of variables 

showed that it was a sine integral and could only be solved by numerical 

techniques. If it is assumed that the lag window width is much smaller 

than the observation interval, Tj^«Tjj, the spectrum represented by 

can be written as 

a 12 sin uu T 
= Y ̂  cos 20^ ^ ̂  J cos urrdT (12B.80) 

= A T^ cos 20^1—] (12B.81) 
^ sin UL T sin cuT-

r o N-ir L 

The power spectral density function for this special case is plotted in 

Figure 12B-7. The effect of truncated data and a rectangular data window 

on the sinewave burst power spectrum is an added sine function term at 

zero frequency and a distortion of the total power estimation. The ampli

tude of the dc term is a factor of 

sin U3 IL 
2 cos 20^[ (12B. 82) 

on 
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sin m T 

-eu 

2TT 
2n 

Figure 12B-7. Power Spectral Density Function for a 
Sinewave Burst where T. «T., 

l n 

smaller than the "true spectral ançlitude of . For practical sit

uations, and the worst case value for this factor becomes: 

% ^ 
(123.83) 

For a dc amplitude of less than one-percent of the "true" amplitude, the 
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sinewave burst must be observed for more than 31.8 cycles. 

These derivations for a simple time function such as a sinewave burst 

help illustrate the mathematical difficulty associated with trying to 

calculate the power spectrum for a truncated periodic function. These 

problems are usually solved numerically. 

8. Errors in amplitude spectral estimation 

A continuous but finite record of a noiseless periodic waveform with 

Fourier period Tp is sang)led for a time T^. The accuracy of the Fourier 

coefficients calculated from this sample record will depend upon the length 

of the sample and the relative amplitude of each frequency component in the 

spectrum. The Fourier transform estimate of the amplitude spectrum is 

given by Equation 12B.5. This estimate can also be written in terms of 

the Fourier frequency, the "true" conq>lex amplitudes, and the observation 

interval as given in Equation 12B.6. 

There are actually four stages of estimation \^ich may be considered 

in determining the accuracy of our estimate. Stage-1 is represented by 

the actual Fourier transform given by Equations 12B.5 and 123.6. These 

estimates are continuous functions and do not directly represent the com

plex ançlitudes. Stage-2 is the discrete spectral estimate obtained from 

doing a discrete Fourier transform such as the FFT. The discrete spectrum 

obtained by this approach is represented by: 

(12B.84) 

or by modifying (12B.6): 
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4M 
sin( ̂  - ̂ )I,/2 

- p)V2 
F N 

(12B.85) 

This discrete spectrum may or may not correspond to the spectral frequen

cies representing the "true" Fourier spectrum. If the Fourier frequency 

were known, a stage-3 estimate would be defined such that 

or: 

i(kui^) = 

:^(ku^) = 

J x(t)e dt 
-T^/2 

(12B.86) 

-fM 
sinrr (n - k)— 

F 

TT(n - k); Ji 

J 

(12B.87) 

Equation 12B.87 can be solved to give an exact expression for the k-th 

complex amplitude as: 

ni4k 

sin TT (n - k)~ 
F 

TT(n - k)^ 
F 

(12B.88) 

The second term on the right-hand side of (12B.88) can be thought of as an 

error correction factor for the Fourier transform estimator. If the 

Fourier transform approximations for the complex amplitudes in the error 

correction factor are substituted into (12B.88), the stage-4 coiq>lex 

amplitude estimator is obtained: 
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n 

1 a 
— S XCnctu) 
N n=-M 

n^k 

sinrr (n- k)— 

T 
TT(n - k);=^ 

F 

(12B.89) 

This estimator is not practical unless the Fourier frequency is known or 

can be accurately approximated. 

The unknown parameters for the estimation problem are T_ and c . 
r n 

These must be determined from x(t) by using T^ and Equations 12B.5 or 

12B.84. The error associated with the ançlitude spectral estimate is 

mostly dependent on the observation time, T^. Equation 12B.10 showed that, 

if T^ was an exact multiple of T^, the complex amplituded could be computed 

exactly. When T^ is not an exact multiple, we can use Equation 12B.87 to 

estimate the error- First let 

tj, = qtp + ar (12B.90) 

where: q = 1,2, 3, ... and 0^û,T<Tp. 

This is substituted into 12B.87 and after many manipulations we obtain: 

]î(ka^) = z cos - k) ̂  
n——M. 

4M 

Tr(n -k)q 

sinTr(n-k)^ 

+ •=n'p^f -">"•[ „(—k). (12B.91) 

This can be further reduced to: 
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2^(k(i^) = qTp Z cos Tr(n - k)^ [5^] 

4m 
+ AT Z  c cosTT(n-k )q sinc[(n-k)^] (12B.92) 

n=-M ° 

The first term on the right-hand side of (12B.92) is reduced to qT^ c^ by 

using the sifting property of the delta function. The second term is an 

error term caused by not sançling at an exact multiple of the Fourier 

period. The principal error term is AT c^ and is found by letting n =k. 

The estimate of (12B.93) is now written as: 

-HM 
x(kuiL) = (qT +AT)c^ + ûT Z c cosTT(n-k )q sinc[(n- k)^] 

n=-m ^f 

(12B.93) 

This equation reduces to Equation 12B.9 when ̂  -*0. As the number of 

periods of observation increases, the term qT^ dominates and the estimate 

converges. 

C. Finite Random Time Functions 

A saiiq>le time function for a random process exists for all time, 

A truncated time function is defined from this sançle by 

multiplying it with a rectangular window function such that 

x^(t) = u^(t)x(t) (12C.1) 

\^ere u^(t) was defined in Equation 12B.2. For this condition, x^(t) is 

absolutely integrable and an asçlitude spectrum exists and is defined as: 
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+® +T/2 

îLCcu) = J x_(t)e'^'"^dt = J x(t)e~^"*^dt T < ®  ( 1 2 C . 2 )  
-eo -T/2 

One might expect to apply the convolution theorem to obtain ^(ou) but this 

requires the existence of the Fourier transform of the infinite time 

function, x(t). For random processes, this transform generally does not 

exist. 

This conceptual dilemma can be resolved through the use of Parseval's 

theorem. The power spectral density function sought is the distribution 

of average power over frequency so for the previous estimations this is: 

+00 +00 2 

Y I ̂(t)dt = ^ —  J  I duj T<= (12C.3) 

The term on the left is an estimate of the mean-square value of x„(t) 

averaged over a time, T. Both this estimate and ]£j,(uu) are random because 

they are derived from only one sarple function of the process and hence 

are not ensemble averages. 

These estimates of average power can be used to derive the power 

spectral density estimate by first taking the expected value of both sides 

of (12C.3) and then taking the limit as T-»®: 

+T/2 ^ 

lim Z r E{xJ(t)}dt = |-J lim ^ E{ | ̂}du) (12C.4) 
T-*«= -T/2 -œ I -, CO ^ 

We know, for a stationary process, that the total power is determined by: 

+® 

E[x^(t) ] = j" S^(u))du) = R^(0) (12C.5) 

2 
The expectation of x^(t) can be reduced as follows: 
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E{x^(t)} = uj(t) E[x^(t)} = u^(t)R^(0) (12C.6) 

This can be used to reduce the left-hand side of Equation 12C.4) and from 

identification with (12C.5) we can conclude that: 

S^(OU) = ̂ limi E{1Î^(uj)|^} (12C.7). 

This gives the power spectral density function in terms of the estimate 

of the amplitude spectrum. 

To show the relationship of this estimate to the autocorrelation 

function definition of spectral power, the Fourier transform relationship 

for 3^(uu) is substituted into (12C.7) to give: 

, ̂ ^ 
s (UJ) = lim ^ E{ J x(t )e ^dt. J x(t_)e ^dt_] (12C.8) 
* T-»« ̂  -T/2 ^ ^ -T/2 ^ ^ 

+T/2 +T/2 ) 

= lim ̂  E[ r r x(ti)x(t_)e ^ ^ dt,dt-} (12C.9) 
T-* ̂ .T/2 -T/2 ^ ^ ^ ^ 

This double integral is further sinq>lified by using the variable substitu

tion, 7= tg - t^, and then, t^ = C: 

+T/2 - t +T/2 

S (cu) = lim ̂  R J E[x(t)x(t+ T) }e"^^dtdT (12C.10) 
* T-= ̂  -T/2 - t -T/2 

For a stationary process, the expected value inside the integral is the 

time autocorrelation function R^(T) and since it is independent of reference 

time, t, the integral equation reduces toi 

+T - t 
S_(cu) = lim r R (T)e ̂ ^dT 

T-®-T-t 

= J R (T)e'^'^dT (12C.11) 
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Equation 12C.11 shows that the estimate for power spectral density given 

by (12C.7) converges and is unbiased for large observation times. 

All of the estimation techniques which have been developed for ampli

tude spectral analysis can be modified and applied to finite random time 

functions by using Equation 12C.7. An estimator for power spectral density 

for an observation time T would be: 

The previous analysis of periodic time functions and random time 

functions could be applied to discrete time functions by "digitizing" all 

of the continuous equations and functions. This approach can be taken 

when the collected data is continuous and the desired degree of numerical 

resolution may be chosen. This technique is equivalent to a numerical 

solution for the continuous case. 

Another approach to the analysis of discrete data is to treat the 

data directly as though it is a time series. The author prefers this 

approach because it results in the use of superior data processing tech

niques. Data in the time domain will be treated in discrete form even 

though it would be possible to generate a continuous function using the 

sampling theorem of Equation 6D.6. 

A periodic time function, x(t), is sampled for a finite observation 

time, Tjj, with a sançling interval, At. This process will generate a 

time series x(kAt). The sasçled function is shown in Figure 12D-1 and 

(12C.12) 

D. Finite Periodic Time Series 
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we observe the following definitions: 

At = The sampling interval. 

fg = The sampling frequency. 

2N+1 = The number of samples of x(t) in the interval T  .  
N 

T^ = The length of the observation interval. 

Tp = The Fourier period of x(t). 

MuL = MThe highest frequency component in x(t). 

1 f 
fp =2 fgj The folding frequency. 

2tt^ = 2Mu^, fjj is the Nyquist frequency. 

x(t) 

Figure 12D-1. A Sauçle Record of a Finite Periodic Time Series 

It will be assumed that x(t) is sampled at a rate greater than or equal to 

the Nyquist rate so that aliasing is prevented. Also, the number of 

samples will be assumed to be odd so that; (2N+ l)At = T^. 
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1. Fourier analysis 

The discrete Fourier transform has been briefly discussed in Chapter 

XI and Appendix II. The discrete transform pair in the time domain can be 

represented by; 

1 2. 
x(kAt) = Y" ^ X(n —)e (12D.1) 

F n=-N ^F 

2n « 
X(n —) = At Z x(kAt)e (12D.2) 

F n=-N 

If the periodic function is s angled such that. At = T^/ (2N + 1), the discrete 

transform pair becomes 

1 2N + 1 
x^= Z ^Xe (12D.3) 

n=-N F 

1 1 -Hî -j 2n+ 1 
= (12d.4) 

F n=-N 

\rfiere the arguments kAt and n ~ have been replaced by the indices k and n. 
F 

Most discussions of the discrete Fourier transform actually use the 

conçlex Fourier coefficients, c^, as the amplitude spectral conq)onent when 

actually it should be X^. This is done in Bergland (1969) and in Equations 

11.9 and 11.10 of this text. As a practical matter it makes little dif

ference as they differ only by the scale factor T^. This can be seen by 

comparing Equations 11.9 and 11.10 with 12D.3 and 12D.4. For a given time 

series k=0, + l, + 2, ...,+N}, the conplex ançlitudes computed by 

(12D.4) represent those which are needed to exactly reproduce the original 
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time series using Equation 12D.3. This feature of the discrete Fourier 

transform is discussed in Chapter XI. In the discussions to follow, we 

will use the circumflex accent over and to denote that they are 

really estimates and the exact Fourier period, T^, will be replaced by the 

observation period, T^. Also, in most cases we will work with the complex 

Fourier amplitudes, c = X /T„. 
n n N 

The theory behind the discrete Fourier analysis of a finite time 

series must be studied to determine the interpretation of the estimated 

spectrum. Given a finite time series [x(kût) ; k = 0,+l,+2, ... » } we 

have 2N + 1 ordered data pairs (x^,k}. This data set can be used to define 

2N +1 complex Fourier coefficients according to the following algorithm: 

These conq>le3C coefficients are actually approximations to the "true" co

efficients representing x(t). These estimates are then used to define a 

bandlimited Fourier series of the form: 

x(t) = Zee " T =(2N+l)At (12D.6) 
n=-N ^ 

This estimated Fourier series has the following properties: 

1. x(t) is continuous and periodic with period, T^ = (2N + l)At. 

2. The highest frequency component present in x(t) is, 2TTf_ = N ~ = 

2n -s- £ 
" 2N + 1 s* 

3. The average value of x(t) is c^. 
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4. The mean-square value of x(t) is computed by: 

(12D.7a) 

5, The critical frequencies of the discrete transform are: 

f =2_ = _el_ f 
n T„ 2N + 1 s 

n 
(n = ±l,±2, (I2D.7b) 

The most important feature of x(t) is the fact that the values of x(t) at 

t = kAt are exactly equal to the data set values x(kAt), in other words: 

x(k6t) = x(kAt), k = 0, +1, +2 > • • • » (12D.8) 

The complex spectral amplitudes in Equation 12D.5 represent the spectrum 

a K 
of x(t) exactly while x(t) approximates x(t). It seems reasonable to 

assume that if enough samples of x(t) are taken so that it is very closely 

approximated by x(t), the spectral estimate, c^, will approximate the true 

spectrum, c^. 

The continuous function, x(t), generated from the c^ by Equation 

12D.6 and hence from the finite time series {x(kAt) : k=0,+l,+2, 

can be said to be "optimum" in the sense that x(t) at t = k^t exactly 

reproduces the original time series with a Fourier series bandlimited to 

N/TJJ. This bandwidth limitation provides the "smoothest" extrapolation 

between data points consistent with the restriction that x(t) be periodic 

with period, T^. The fact that x(t) is both periodic and bandlimited 

provides considerable mathematical convenience for analysis purposes. 



www.manaraa.com

168 

To illustrate the discrete Fourier transform we will look at a single 

example. PROGRAM 01 in Appendix III has been written for the example. The 

line spectrum subroutine in this example is a straightforward digital 

transform. For large amounts of data processing, thç FFT should be used. 

Consider a time series obtained by sampling a continuous time function 

represented by (see Appendix II) % 

x(t) = 4 cos(2Trt) + 1 sin(6TTt) (12D.9a) 

where, a^ = 4 volts, f^ = l Hz., ^3 = 1 volt, and f2 " ̂ Hz. The Fourier 

frequency is 1 Hz. and the highest frequency is 3 Hz. The complex ampli

tudes are calculated to be: 

•=0' =2 = ° 

* 
<=1 = '.1 = 2 

. TT 

* 1 "J 2 1 
C3 = c_3 = Y G = -j 2 (12D.9b) 

The data inputs to the program are the a's and b's, the Fourier period, 

the period of observation, and the number of data points. The program 

generates x(t) sainpled at the intervals At = T^/(2N + 1) and calculates the 

magnitude and phase of c^ for, n=0, 1,2, ...N. The magnitude of c^ with 

* 
respect to a chosen reference is also given. Finally the calculated c^ 

A A 
are used to generate the estimated series x(t) where x(t) is sampled four 

times as often as x(t). 

By varying T^ and 2N +1 it is possible to see the effect of sampling 

on the confuted discrete spectrum for the time series {x(kût) ; k=0,+l, 

+2, ... jg)}. Figure 12D-2 shows the effect of observing for less than a 
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Figure 12D-2. Discrete Spectrum Plots Showing 
the Effect of a Varying Observation 
Period 
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Fourier period and also shows how the spectrum converges as approaches 

Tp. Several computer runs where was an exact multiple of showed that 

the calculated spectrum was exact within computational accuracy. The 

magnitude of the complex amplitude was plotted in dB with a two volt 

reference. A dB plot is necessary because of the wide range of ançlitude 

values. It is important to note that the plot for 1^ = 0.7 shows no peaks. 

This may be described as a shift of spectral power toward dc. 

Figure 12D-3 shows the calculated spectrum for a variety of sançling 

conditions. It is inçortant to note that the spectral resolution of 81 

data points and T^= 10.5 is little better than the resolution of 21 data 

points and = 3.1. This illustrates the very important effect of obtain

ing and observation period as close to a multiple of Tp as possible. The 

reader may experiment with these effects by using PROGRAM 01 to study a 

variety of sampled functions and sampling conditions. For large data sets, 

a Fast Fourier Transform subroutine should be used in place of SUBROUTINE 

LNSPTM. The high degree of spectral selectivity observed as is varied 

was the reason for the discussion at the end of Chapter XI of the selection 

of an optimum observation period. This procedure has mudi potential in 

terms of improving the discrete Fourier transform. This theory needs to 

be worked out. 

2. Spectral mixing 

A discussion of spectral mixing and the derivation of the spectral 

mixing formula were given in Chapter XI. In this section we discuss the 

usé of the spectral mixing formula 
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Figure 12D-3. Discrete Spectrum Plots Showing the 
Effects of Long Observation Times and 
Increased Number of Samples 
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a ^ 
Cq = Z (12D.10) 
^ r=-M ^ 

where the estimated Kronecker delta function is defined by: 

n 

2 N  +  1  2 N + l ^ T ^  " ( 1 2 D . 1 1 )  

The estimated Kronecker delta has the following properties: 

r # q and T^ = T 
(12D.12) 

^rq 0 rfq and T^ » (12D.13) 

The ranges on the indices are: 

r = 0, +1, +2, +m 

q = 0, ±1, ±2, +N (12D.14) 

PROGRAM 02 was written to verify the formula for the estimated 

Kronecker delta function. RON #1 shows all values for the condition 

TF = TN=1, and M = N= 5. Within a high degree of accuracy. Equation 

12D.11 is verified for the conditions specified by Equation 12D.12. For a 

large number of sangles, the estimated Kroneker delta converges to the 

"true" delta function. This can be verified using PROGRAM 02 by increasing 

N and TN. The interested reader is encouraged to experiment with the 

A 
properties of 5^(N,Tj^,T^) by using the program. 

There are a variety of ways the spectral mixing formula can be applied 

to the analysis of the spectrum of a time series. A particular application 

is needed before a specific use can be specified. One of the most useful 
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applications is the determination of the amplitude resolution limit for 

an estimated spectrum. The determination of resolution limits will be 

discussed in Chapter XIX. 

3. Spectral resolution and accuracy 

A discrete frequency spectrum derived from digitally processing a 

time series can be viewed as a sampled frequency spectrum. Because of 

sampling, the spectrum will have a limited resolution and accuracy and it 

will be finite. For a periodic time function, x(t), the maximum and min

imum frequencies present are: 

• W '  1 :  "  fm a x  °  i :  M  (12D.15) 
r f 

"kin = Ip (12D.X6) 

For a time series with sampling interval, At, and observation interval, 

Tjj= (2N+l)At, the maximum and minimum frequency components detected by 

the digital transform are: 

U, = |ll n ' ^ ^ 
max Tjj max 2N+1 At (12D.17) 

The digital transform can be viewed as generating discrete frequency "boxes" 

or frequency bands into which the confuted power in the s angled signal is 

distributed. A continuous spectral function is generated from the discrete 

spectrum by expanding in a series of sine functions (see Equation 12B.6): 
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•Hî sinTT (f - f )T 

[  T t C f - f k  ]  ( « D . 1 9 )  
n=-N n N 

The bandwidth between first nulls is: 

- h (120-20) 
n 

The center frequencies for the "boxes" of the discrete transform are 

^n 2N+1 At 2N+1 ̂ s T^ (12D.21) 

where f^ is the sançling frequency. A convenient technique for concep

tualizing this process is illustrated with the help of Figures 12D-4 and 

12D-5. 

4. Sampling and "sync" frequencies 

The selection of a sampling interval, and an observation period has 

a profound effect on the estimated spectrum when the total number of 

samples is limited. As we discussed in the Fourier analysis section, a 

value of Tjj ̂ ich is exactly a multiple of the Fourier period will produce 

an exact spectrum up to a frequency of N/T^. The sampling interval, 

At = TJJ/(2N+1), may determine how many unique sang)les of a particular 

sinusoidal conçonent are obtained. Consider the effect of the sampling 

interval on a single sinewave as shown in Figure 12D-6. This is effec

tively the same as sampling a single period of the sinewave over many 

points as shown in Figure 12D-7. 
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c(f) 

(3 samples) 

(5 samples) 

(7 sang)les) 

Figure 12D-4. Conceptual Presentation for Illustrating 
the Distribution of Spectral Power as the 
Number of Sangles Increases 
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c(f) 

N = 12 
(25 Samples) 

de 

10 

N = 12 N = 3  N = 2  N = 1 

Figure 12D-5. Conceptual Presentation for a 
Large Number of Samples 

This way of looking at the sampling process led to the discovery of 

unique sampling frequencies we will call "sync" frequencies. When the 

spectrum of x(t) contains a sinewave component corresponding to one of 

these sync frequencies, the number of unique sangles of this spectral com

ponent is limited to a finite number, n^. 

To determine these frequencies, consider the single sinewave in Figure 

12D-8. We can define a remainder period AL such that: 

2AL = T-UpAC n=3,4,... AL^O (12D.22) 
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x(t) 

llAt 
ÔAt 

3At-
8At 

9At 
0 
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lOAt 

12At 2At 7At 

Figure 12D-6. Sampling a Single Sinewave 

llAt 
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At, 14At 
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Figure 12D-7. Equivalent Sampling Information 
for One Period of a Single Sinewave 
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At 
2 al 

2At 

Figure 12D-8. Single Period Sampling of a Single Sinewave 
Showing Remainder Period, 

The integer, n^, represents the number of increments in a period, T, before 

the cycle repeats and AL is one-half of the remaining period length. 

For, AI'=0, the sync frequency and unique s angling interval are de

fined by: 

1 n 
AL=0 At = -- T f = (12D.23) 

°p sn T 

For a 3 Hz sinewave and, n^ = 7 unique samples, the sync frequency would be 

21 Hz and the sançling interval would be 1/21 seconds. It should be noted 

that any integer multiple of a sync frequency is still a sync frequency. 

For, AL >0, the total number of periods sampled imist accumulate until 

n^AL = T. The sync frequency and unique sampling interval become: 

iL>0 (i -

P P (12D.24) 

Hp = 3,4,5,...(2N+1) 
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For the previous example, the sync frequency would be 42/5 Hz and the 

sampling interval would be 5/42 seconds. 

Another way to view sync frequencies is to select a given sançling 

frequency, f^, and determine where in the spectrum these frequencies will 

occur. They will occur at frequencies corresponding to: 

f = ~ and f = (^-•^)f^ ^ (12D.25) 

P P 

AL=0 AL>0 

The location of these frequencies with respect to the discrete spectrum 

is shown in Figure 12D-9 for S^n^^lO. This figure should be conçared to 

those in Part 4 of this section. From the figure it can be seen that the 

frequency f^/S has the fewest unique samples of all the sampled frequency 

components. For n^ = 3, the critical Fourier frequencies are 

1/7 f». 2/7 f,' 3/7 f; 

as shown in the figure. Only the first component corresponds to a sync 

frequency. 

As stated previously, the total number of independent samples for any 

given sync frequency is n^. It does not improve resolution to sample for 

an observation interval longer than, T^^^n^ût. There is an exception to 

this however if the sinewave is corrupted by noise. With a signal that 

has additive noise, the resolution accuracy can be improved by increasing 

the observation period because this will provide an averaging effect for 

each of the unique sample values defined for the noiseless case. 
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5/14 3/8 7/18 2/5 

1/6 1/4 3/10 

0 

1/6 1/5 1/4 

3/7 2/7 1/7 

Figure 12D-9. The Locations of the Principle Sync 
Frequencies as Referenced to the 

Sampling Frequency, f^ 

5. Noisy data 

When "ideal" data is corrupted by noise or unwanted statistical 

variations, the collective parameters which characterize the process 

become functions of a random variable. The estimated averages will fluc

tuate according to how the data is taken and how much data is observed. 

The effect of noise can be reduced only by increasing the amount of 

data taken and applying averaging techniques or by smoothing the data 

record according to some a priori knowledge of the generating process. 

Quite often, data is smoothed by applying digital filtering to remove 
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the high frequency noise mixed with the desired data. In spectral analysis, 

noise effects are reduced both by selective filtering and by spectrum 

averaging. 

Selective filtering (also called notch, bandpass, highpass, lowpass, 

or rejection filtering) can be used when the desired spectrum is limited 

to seme specified frequency range or ranges. This type of processing 

requires a knowledge of the "possible" spectral characteristics of the 

signal. Selective filtering and preprocessing of the data function were 

discussed in Chapter IX. 

Spectrum averaging can be implemented when several spectral estimates 

for the same process are available. In the discussion of the Blackman-

Tukey method of spectral analysis in Chapter IX, it was noted that the 

estimated spectrum is the convolution of the "true" spectrum with the 

spectral window function (Equation 9E,5). This is only true for the 

expected value of P(f). In other words, P(f), is a random function and 

several spectral estimates must be averaged before the conq)osite estimate 

approaches the ideal case specified by Equation (9E.5). In this sense, 

even the smoothed estimate of the power spectrum given by E[P(f)} is still 

a very idealized concept. 

There are essentially two ways to determine an average frequency 

spectrum in time series analysis. First, if the time series is used to 

generate a discrete autocovariance function which is then Fourier analyzed, 

the resulting discrete power spectral density function will be a set of 

spectral aoq>litudes and discrete frequencies. Several of these power 

spectral density records may be averaged to determine an average power 
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spectrum. In some instances it will be necessary to average the absolute 

values of the amplitudes to avoid the conceptual problem of dealing with 

theoretically impossible negative components. This can also be handled 

by windowing or other such techniques. 

Second, if the amplitude spectrum is calculated directly, the Fourier 

coefficients will be complex and one must chose one of two methods of 

averaging complex numbers. The first type of average is called the vector 

or coherent average. This processing involves averaging first the real 

parts and then the imaginary parts of all the complex numbers. It may be 

written as: 

It is called a coherent average because it is usually used when the phase 

information is important. The second type of complex number average is 

called the algebraic or incoherent average. For this processing, one 

averages the absolute magnitudes and then the phases of all the complex 

numbers. "Hie algebraic average is represented by 

(12D.26) 

+j 
Avefc } = c e 

n-" n 
(12D.27) 

where: 

(12D.28) 

(12D.29) 
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The equations for the vector or coherent average have been worked out 

using the familiar Fourier series notation given in Equation A2.2 in 

Appendix II. The reader is cautioned to realize that the time records 

must be phase connected or measured with respect to the same absolute 

phase reference or the advantage of a coherent average cannot be realized. 

A particular data set denoted by the subscript, m, is corrupted with 

noise and is written as 

X (k^t) = %(k^t) + 6 , (12D.30) 
m niK 

where the tilde accent denotes a measured value and denotes an additive 

noise time series for the m-th record. The estimated Fourier coefficients 

for the m-th record and the corresponding error contributions may be 

written as: 

1 ~ 
"mo ' HTT 

, -W 1 

" 2N + 1 \ + 2N + I ^ ®nik (12D.32) 
k=-N k»-N 

= X + ACjjj (12D.33) 

A 2 
• 2BÎÏ . «F (12D.34) 

k—N 

(12D.35) 
n mn 

= 1) + Ab (12D.37) 
n mn 
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The coefficients a and t are the estimates obtained without noise cor-
n n 

ruption and are denoted by: 

A 2 2 
rwTT ^ x(kAt) cos (-^ nkAt) (12D.38) 

k=-N 

A 2 2 
h = ^ . 1 S x(kAt) sin (-2 nkAt) (12D.39) 

k=-N 

The contributions to these estimates caused by the noise corruption are 

given by: 

2 -W 2tt 
= 2ÏÏTÎ ^ '»k <T- (12D.40) 

k=-N 

1 2TT 

' V M + T  ̂  s i l  ( J - n k i t )  ( 1 2 D . 4 1 )  
k=-N 

If there are MM independent records to be averaged, the average values 

for the estimated coefficients are calculated as: 

I ^ A 

. = + Afljj (12D.42) 

. 1 MM 

= 5» Z, frn 
r—i 

= t + Ab (12D.43) 
n n 

The error term Aa and Ab can be calculated from: 
n n 

- MM . MM . -W , 

= MM =, A*ra ' MM \ 2SÎÎ ^ (12D.44) 
r=l r=l k*-N 

_ , MM . MM 2 -W -

Abo = MM ?, " jS ?, 2nTÏ . «rk"® (f <12D.45) 
r—i r—1 K—w 
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Actual data records are numerically processed by computing a and 
mn 

b for each record and then numerically averaging over all MM records to 
mn 

obtain Avefa } and Ave[& }. The uncorrupted estimates of the spectral 
mn mn 

amplitudes are obtained by solving Equations 12D.42 and 12D.43 to get: 

a = Ave [a } - (12D.46) 
n on n 

6 = Avefé ] - 6b (12D.47) 
n mn n 

As the number of data points becomes very large, the estimates converge 

to the "true" values, a and b . The error terms Aa and Ab can be 
n n n n 

statistically specified if the statistical parameters of the noise series, 

e , , is known. This will allow one to obtain error limits and variance 
mk 

estimates on a and A . 
n n 

A similiar analysis for the algebraic or incoherent average can be 

derived. Starting with an absolute magnitude estimate for each spectral 

component of the m-th data record we obtain: 

l^m.1 = 2 (12D.48) 

The incoherent amplitude average becomes: 

, MM ^ 

AveCjc^i) = ÏS krni (12D.49) 

The reader should contrast this estimate with the coherent amplitude es

timate given by: 

J Ca^+^^ + 2(a Aa +b Ab )(12D.50) 
6  n  n  u n n u  n  n  
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The advantage of a coherent average over the incoherent average for ob

taining an amplitude resolution limit will be discussed in the chapter on 

6. Detection of a single sinewave in bandlimited white Gaussian noise 

A single frequency sinewave can be detected in bandlimited white Gaus

sian noise if the signal-to-noise ratio is large enough. In statistical 

detection theory (Whalen, 1971) the presence of a sinewave is determined 

by the change in the output of an envelope detector. Since the noise alone 

has a Rayleigh distribution and the signal plus noise has a Rician distri

bution it is possible to determine the probability of detection as a func

tion of signal-to-noise ratio for a given detection threshold. In spec

tral analysis the same types of effects are involved. A presentation of 

some basic ideas for statistical detection of periodic components in an 

estimated spectrum are presented in Chapter XIX. A single presentation 

for a single sinewave and "ideal" noise will now be given. 

To begin, we define a time series that is the sum of a single fre

quency sinusoid and a t^ite noise sequence: 

interpretation of estimated spectra. 

x(kAt) = Ç(kAt)+ [c^e 
* 
-j ̂  kAt 

(12D.51) 

The white noise sequence (Appendix I, Part G) was defined as: 

E{|(kAt)} = 0, E(5(kAt)§(pAt)] = 0 , kfp 

ECl^(kAt)} = = 
(12D.52) 

The questions to be answered are: 
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1. What are the important characteristics of the amplitude spectrum 

estimated from one or more sample records of the process? 

2. What is the effect of increasing the number of samples? 

Define a sample realization {x(kAt): k=o, +l,+2, ...,4^} of the time 

series in (12D.51) as (2N + 1) sauries taken at an interval, At = l/f^. As

sume that no aliasing occurs and that for any sample record the average 

value is approximately zero. A discrete Fourier transform applied to the 

sample time series will give (Equation 19D.3): 

Representing the noise components with Equations 19C.3 and 19C.4 and the 

Z Ç(kAt)e 
k=-N 

• - nAf) + Cj^ & ( nAf) (120.53) 

{n = 0, +1, +2, ..., ̂  } 

estimated amplitudes of c^ in the complex form Be ° gives: 
n • 

A 
c (12D.54) 

A A 

(12D.55) 

For a large number of samples the spectral mixing formula gives a 

good approximation for the amplitude c^. The large sample approximation 

is 
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__ , , +jGi 
B_^e =- Ic^le (12D.56) 

B =- 0 njt+l 
n — 

and: 

V ""'±' (12D.57) 

°1 ° 2N+ 1 ' J * I'll® ' (12D.58) 

If a large number of phase connected samples are available, a coherent 

average (Equation 12D.26) may be taken which yields: 

A ° ; 
= j ̂ ^2iïTl5=° (12D.59) 

a P 
Ave{c^} = E{^j^ + Uil cos + |c^| sin 0^} 

= (12D.60) 

This performance is very good but it takes large amounts of data. If the 

coup lex amplitudes are incoherently averaged the resulting estimate 

A or I. 
n!&±l (12D.61) 

is Rayleigh distributed (Equation 19C.7). The resulting estimate for 

|c^| has a Rician distribution (Whalen, 1971): 

A 

1^1' = "^^2^"^ kjcos Icjsin ep^]^ (12D.62) 
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A statistical criterion for detection can be developed using the con

cepts of average spectral density and the Rician density function. The 

Marcum Q-Function is used to test the value of ]c^| against a threshold 

determined by Ave[c^}. The author plans to develop this idea in a future 

paper. 

The same concepts can be applied to Equation 12D.54 the only effect 

1 1 "^®1 -j*l 
is the change of |c^|e to B^e caused by the spectral mixing effect. 

The reader is referred to Chapter XIX, Section C where more properties 

of the DFT and Gaussian noise are discussed. In particular, a relatively 

simple criterion is given for testing a noise spectrum to see if it con

tains a periodic component. 
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XIII. PREDICTIVE DECONVOLUTION 

An analog or digital filter convolves an input, x(t), with the filter's 

impulse response, h(t), to give an output, y(t). The central problem of 

deconvolution is: given the output y(t) and either x(t) or h(t), can the 

third function be uniquely determined? The answer is very definitely no. 

Deconvolution involves finding the inverse filter for h(t) and this demands 

that the reciprocal of the transfer function of h(t) exist for all frequen

cies of interest. 

To provide a practical basis for the problem of deconvolution it is 

necessary that the class of possible filters be restricted to those for 

which the inverse filter exists and is well-behaved. This restriction may 

appear to be too severe but it turns out that much scientific data process

ing and spectral analysis problems can be modeled with such a class of 

filter. A class of filters variously called prediction error filters. 

digital Wiener filters, least-squares inverse filters, least-squares decon

volution filters, prevrfiitening filters, or recursive digital filters have 

been successfully used in the deconvolution of geophysical data (Peacock 

and Treitel, 1969). 

Predictive deconvolution techniques are usually applied to a degen

erate class of time series characterized by a known cosçonent and a purely 

random component. The desired objective is to take a measured time series, 

x(t), and decompose it into a completely predictive conçonent, z(t), and a 

random or uncorrelated component, T|(t). 
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In the analysis of practical time series and especially \rfien applying 

autoregressive analysis techniques, it is assumed that the time series 

{z(t): t = 0,+l,+2, ...} can be characterized by a finite number of unique 

parameters (these will be discussed shortly). The uncorrelated component 

for these analysis techniques is represented by the white noise sequence 

{§(t): t = 0, 1, 2,...}. Characteristics of a white noise process with 

finite variance are discussed in Chapter XIV. 

For the rest of this chapter, the time index [t = 0,+l,+2, ...} will 

be used as shorthand notation for {t = kAt: k=0,+l,+2, This nota

tion is common in the literature and so is the convention of assuming 

At = l. This convention will be used except where the explicit omission of 

At may cause confusion. 

The three most commonly used mathematical models for representing a 

measured time series are the Fourier series, the autoregressive series, 

and the convolution of the known and random conq>onents. The Fourier series 

representation may be written as the sum of a white noise sequence (see 

Equation 14.3) and a conç)lex Fourier series with complex anq>litudes, c^ 

and Fourier period Tp: 

-« 4 

x(t) = §(t)+ S ce =|(t)+z(t) (13.1) 
n=-M 

The predictable con^onent, z(t), is characterized by the 2M+1 complex 

amplitudes and the Fourier period, T^. This constitutes the finite number 

of unique parameters for this representation. 
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The second representation is an autoregressive series (see Chapter XIV 

and Appendix I) of order K: 

K 
x(t) = |(t)+ 2 ax(t-n) (13.2) 

n=l ° 

The predictable conçonent is characterized by the finite number of ançli-

tude coefficients {a^: n=l,2, ...K}. The power spectral density function 

for this process model is both continuous and bandlimited. The resulting 

autocovariance function is infinite and nonperiodic. 

It is reasonable for the reader to wonder at this point if a process 

can be modeled as the sum of a Fourier series and an autoregressive series. 

The answer is, yes, a process that has a power spectral density function 

that has both continuous and discrete conçonents should be represented as 

the sum of both models (Cooper and McGillem, 1971, Ch. 6). The autocor

relation function for such a model will be infinite and contain periodic 

and nonperiodic components. 

The third common model is the convolution of a white noise sequence, 

ri(t), with a completely known time series, z(t), to give: 

y(t) = z(t) *T|(t) = Z z(n) T| (t - n) (13.3) 

n 

It is this model that is used by Peacock and Treitel (1969) to develop a 

scheme of predictive deconvolution. The notation y(t) is used for this 

model to avoid confusion with the autoregressive process model which yields 

similiar results. 

The desired least-squares deconvolution filter which characterizes 

z(t) is the one which ideally transforms y(t) into a white noise sequence 
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and hence 

y(t) *b(t) = z(t) *Ti(t) *b(t) =T|(t) (13.4) 

or: 

y(t) *b(t) = Ti(t) (13.5) 

The deconvolution filter and the predictable component are now related by: 

If both z(t) and b(t) are modeled using predictive filters, b(t) can be 

referred to as the inverse filter characterizing z(t). This is why the 

technique is often called least-squares inverse filtering. Peacock and 

Treitel (1969) develop a general technique vAereby the data function y(t) 

is used to generate a filter b(t) which describes the deconvolved component, 

z(t). z(t) can be described as a filter or convolving function which 

transforms a white noise input, T|(t), into the time series, y(t). What 

this really means is that the spectral function representing v(t) is 

limited to a class of functions that can be described as the output of a 

real filter with white noise input. Also, the inverse filter must exist. 

Before continuing, we will digress to examine Equation 13.1 and to put it 

into an alternate but especially interesting form. First substitute 

Equation 11.12 into (13.1) to get: 

z(t) * b(t) = 1 (13.6) 

x(t) = §(t) + ^ Z x(kAt)e e 
n=-M k=-N 

(13.7) 

By interchanging summation this can be written as: 
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+N 
x(t) = |(t)+ S x(kAt){ 

k=-N 
} (13.8) 

Now the kAt dependence is factored out of the term in brackets and the 

series is written in a more contact form as 

•m 
x(t) = §(t) + s a. (t) X (kAt) t = 0, +At, +2At 

k=-N 
9 j^AC. (13.9) 

where: 

(13.10) 

2N+ 1 
1 M 

{1+2 E cos[—n(kAt - t)]} 
n=l F 

(13.11) 

It is interesting to note that (13.9) is similar in form to (13.2) except 

that the coefficients, or^(t), are functionally dependent on the index t. 

Also, the coefficients are even in both t and kAt and are another form of 

the estimated Kronecker delta function (Equation 11.19). This difference 

between (13.2) and (13.9) accounts for the difference in the two types of 

time series representations. The indices for the representation of (13.9) 

do not have to be symmetrical about t=0 and could just as well be written 

as 

If the time series contains a single frequency spectral component 

where the period is fairly well-known, the complex Fourier amplitude can 

be obtained by using the estimator (Equation 11.15): 

2N 
x(t) = §(t) + S OL (t) X (kAt) t= 0, At, ... 2NAt 

k=0 
(13.12) 

with o^(t) now being symmetrical about the point, t = (N+l)At 
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, -Hî 
C(f ) = 2^ Z x(kAt)e ° (13.13) 

® ^ ̂ ̂ k=-N 

This conçonent is then removed from the data by (See Appendix II) 

x(t) = x(t) - 2l($(f^) I cos (|^ t + 0^) (13.14) 
o 

where 0^ is the phase angle of ^(fo). The numerical algorithm for this 

estimation will take the form: 

A , 2N+1 
Re(C(f )} = ̂  . Z x(kAt) cos [— (k-N - l)At] (13.15) 

° k=l ^o 

1 2N+1 
ImfC(fo)} = ̂ 7Y x(kAt) sin (k - N - l)At] (13.16) 

l(5(f^) I = [Re^{C} + ini^Cc]]^ (13.17) 

d = ARCTANC^^sI^I] (13.18) 

R e i ê ]  

x(kAt) =x(kAt)-2|(5(f^) 1 cos C|2 (k-N-l)At + 0^] (13.19) 
o 

PROGRAM 06 in Appendix III has been written to implement the estimator 

described above. The modified time series, x(t), may also be spectrum ^ 

analyzed to determine a "residue" spectrum. If the period T^ is not 

exactly known, the complex amplitude can still be found by using approx

imation techniques. For example a discrete Fourier transform estimation 

using x(t) would give approximate spectral components to use as starting 

values. 
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We now proceed to derive the mathematical properties and methods 

involved in determining a suitable predictive deconvolution technique. 

The predictive filtering viewpoint and the autoregression analysis view

point will both be presented since they are mathematically equivalent. 

The discrete convolution formula for a digital filter (Equation 5C.4) 

is 
t 

y(t) = Z h(t - n) % (n) t = 0,+1,+2, ... (13.20) 

n 

where the lower range of the index, n, depends on the length, K-1, of the 

digital filter. The sampled inçulse response of the filter is limited in 

time to the series [h(nAt): n = 0, 1, 2, ... (K-1)} where h(nAt) =0 for 

k^K. K is called the length of the filter and the lower limit on n 

becomes (t-K+1). The filter coefficients have been normalized by At. 

Linear prediction can be formulated in terms of a filter output by con

sidering h(t) to be a linear prediction operator with prediction distance 

orAt. The output of the filter will be an estimate of the input time series 

at some future time t+o;. This is represented by: 

y(t) = S h(t - n) X (n) = x(t + a) (13.21) 

The best linear prediction in a least-squares sense is made by a filter 

with coefficients that minimize the total mean-square prediction error: 

M= S e^(t + a) = ECx(t + Qr)-x(t + a)]^ t = 0,+1,+2, ... (13.22) 
t t 

The error of the prediction, e(t + a), is the difference between the "true" 

and predicted values of the time series: 

e(t + a) =x(t+ Of) - x(t + Qf) = x(t+ a) - Z x(n) h (t - n) (13.23) 
n 
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The total mean-square error can be written in terms of the infinite time 

series and the filter coefficients: 

2 
M= S [x(t +a)-, S x(n) h (t - n) ] (13.24) 

t n 

A system of K equations can be used to determine the K unknown filter co

efficients that will minimize M. This system of equations is obtained by 

the following minimizations: 

= 0 k=0, 1, 2, (K-1) (13.25) 

The k-th linear equation is derived from 

= -2 Z [x(t + a) - E x(n) h (t - n) ]x(t - k) = 0 (13.26) 

This may be written in the more usual form as 

t 

S C S x(n) h (t - n)]x (t - T ) = S x(t + a) x (t - T ) (13.27) 
t n t 

T=0, 1, 2, ...,K**1. 

or: 

K-1 
E h(n)r(T-n) = S x(t + a) x (t - T ) (13.28) 

n=0 t 

T =  0, 1, 2, K- 1 

If we make the following substitutions 

r(T-n) = E x(t) X (t - T +n) (13.29) 
t 

r(T+A) = Z x(t+ A) X (t - T) 
t 
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we can write the system of equations given in (13.28) in terms of the co-

variance matrix and filter coefficients as (remembering r(T)= r(-T)): 

r(0) r(l) .... r(K-l) h(0) r(a) 

r(l) r(0) . . . . r(K-2) h(l) r(Q:+ 1) 

. . . . . . r(1) * 

r(K-l) r(K-2) . . r(l) r(0) h(K-l) r(a4iC-l) (13.30) 

The covariance matrix is made up of elements: 

r(T) = Z x(t)X (t - T) = r(-T) 
t 

(13.31) 

The system of equations represented by (13.30) is solved for the filter 

coefficients by inverting the covariance matrix. The least-squares pre

diction operator represented by h(t) can be used for the prediction: 

x(t + Qf) = Zh(t-n)x(n) 
n 

The prediction error operator is defined as 

Of- 1 zeros 

(13.32) 

[g(n)] = 1, 0, 0 ..., 0, -h(0), -h(l), -h(K- 1). 

= 8(0), g(l), ...» g(a+K). (13.33) 

which may be used directly to obtain the error of an or-step prediction: 

e(t + Qf) = I g(n) X (t + or- n) 
n=0 

(13.34) 

Equation 13.34 is also an alternate representation of (13.23). 

The least-squares prediction operator characterized in Equations 13.30 

and 13.32 contains the elements of a prediction filter while the least-
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squares prediction error operator of (13.33) represents a prediction error 

filter. Before looking at the central problem of predictive deconvolution 

and filtering we will digress to consider the autoregression approach to 

the same analysis. 

For autoregressive processes; modeled by (13.2), the best linear one-

step predictor in a least-squares sense (Appendix I and Koopmans, 1974) 

is given by: 

A K 
x(t + l) =x(t+1)-g(t+1) = s ax(t + l-n) (13.35a) 

n=l ^ 

= a^ x(t) + 32 x(t - 1) + . .. + x(t - K) (13.35b) 

The one-step prediction error is the expected value of the mean-square 

error: 

E{((x(t+1) -x(t+l))^}=E{§^(t+l)} = c^ (13.36) 

Koopmans (1974) has shown that the best a-step predictor in a least-square 

sense for an autoregressive series is (o-^K+l): 

* 0^-1 A K 
x(t + o?)= s ax(t+Qr-n)+ E a x(t + or - n) (13.37) 

n=l n=Qf 

x(t+a) = a^ x ( t  +  a -  1 )  + a^ x(t + a-2) + ... a^_^ x(t+ 1) 

+ aQx(t) + a^lX(tr 1) +... a^(t+ a-K) (13.38) 

The a-step prediction error is (or 2 2): 

E{(x(t + ff)-x(t + Qf))^} = E{|^(t+a)}= a^Cl+ E a^] (13.39) 
n=l ^ 
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The coefficients {a^: n= 1, 2, 3, ... K] of the autoregression can be ob

tained by solving the matrix of autocovariances specified by the Yule-

Walker equations and derived in Chapter XIV (Equation 14.47). In the 

notation of this chapter, the solution is: 

pr r(0) r(l) . . r(K-l) 

®2 
= 

r(l) r(0) . . r(K-2) 

r(K-l) r(K-2) . . r(Ô) 

-1 
r(l) 

r(2) 

r(K) (13.40) 

For a one-step predictor (a= 1) Equations 13.40 and 13.30 give the 

same coefficients. The relationship between the filter coefficients and 

autoregressive coefficients is expressed as: 

h(n - 1) = a n—1,2, 3, ...,K (13.41) 

Although we see that the predictive filter and autoregression are two 

seemingly separate viewpoints on prediction and prediction error for time 

series, they produce identical results for the one-step predictor. This 

equivalence will become important later on when maximum entropy spectral 

analysis is derived in terms of predictive filters and autoregression. 

The deconvolution operator, b(t) is determined using the one-step 

prediction operator and the condition given by Equation 13.6. The basis 

for the existence of this operator is the fact that the autocorrelation 

function for y(t) differs from that for z(t) only by a constant scale 

factor. This will now be shown. Using an analogy to Equation 5B.8, we 

know that the spectral density of y(t) is equal to the product of the 
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spectral densities of z(t) and T)(t) 

SyCcu) =S^(uu)S^(u)) (13.42) 

and consequently the convolution of their autocorrelation functions is: 

From theory we know that the autocorrelation function for white noise is a 

2 
delta function with strength 

R^(T) = a^6(T) (13.44) 

The convolution integral of (13.40) becomes 

Eyy<T) = a^ R„(T) (13.45) 

and we see that the output and input autocorrelation functions differ only 

2 
by a constant amplitude scaling factor, a^. We can also conclude that the 

power spectral density function amplitudes differ by the same scale factor. 

The property of (13.45) has been used by Peacock and Treitel (1969) 

to develop a predictive filter for deconvolving z(t) and r|(t). The matrix 

of (13.30) is augmented by adding the estimated variance of the white noise 

sequence (see Equation 14.44) 

2 K 
G = r(0) 4- T. r(n)h(n-l) (13.46a) 
" n=l 

K 
= R (0) + Z R (n)h(n-l) (13.46b) 

n=l ^ 

to give: 
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r(0) r(l) 

r(l) r(0) 

r(K) 

r(K-l) 

r(K) r(K-l) . . r(0) -I 
yy 

1 

1 1 

-h(0) 0 

-h(l) 0 

-h(K-l) 0 (13.47) 

The column vector [h] forms a one-step prediction error operator which 

operates on [r]^ to give the one-step prediction error, The aug

mented matrix equation (13.47) is identical in form to that determined by 

augmenting (14.46) or (13.40) to give: 

r(0) r(l) . . r(K) -1 - r- 2-, 

r(l) 

o
 

u
 . r(K-l) 
-^1 

0 

• 

* * 

"®2 0 

r(K) r(K-l) . . r(0) _ 
n 

0 (13.48) 

Again we see that predictive filtering and autoregression are equivalent 

viewpoints. By comparing (13.48) and (13.47) with (13.5) and (13.6) we 

see that the deconvolution filter or predictive deconvolution operator is 

characterized by the following system of equations: 

r(0) r(l) . 

1 8
 

M b 
o 

1 

r(l) 

o
 

u
 . r(K-l) 

h 
0 

• ' • — 0 

r(K) r(K-l) . . r(0) _ 0 (13.49) 
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The deconvolution operator is seen to be just a scaled version of h(n) or 

a as: 
n 

"o = "T >>0 ' 4-

b = -a b = h(n - 1) 
n n n 

(13.50) 

Deconvolution is performed using Equation 13.5. The power spectral density 

function for y(t) is characterized by z(t) or the inverse of b(t). This 

will be shown in Chapter XIV. 
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XIV. AUTOREGRESSIVE SPECTRAL ESTIMATION 

The estimation of a continuous power spectral density function using 

autoregressive techniques is based on the fact that any weakly stationary 

(covariance stationary) stochastic process with a continuous spectrum can 

be represented by an infinite moving average (Koopmans, 1974). 

A moving average process is defined by the series 

+® 

y(t) = Z b^§(t-n) t = 0,+l,+2, ... (14.1) 
n=-® 

where the coefficients, b , are restricted to: 
n 

-H= 

E b^ < œ (14.2) 
ti=-œ 

The time series {y(t): t=0,+l,+2, ... } is completely characterized by 

the coefficients [b^} and can be thought of as a linear transformation of 

the white noise process represented by §(t). The white noise time series 

{§(t) : t = 0,+l,+2, ... } characterizes the white noise process and is 

completely described by its mean, autocovariances, and spectral density. 

The mean of the vAite noise process is zero 

E[§(t)} = 0 (14.3) 

and the autocovariances are: 

fa^, k = 0 
C(k)=E{§(t) §(t-k)} =< (14.4) 

1 0 , k?fO 

The power spectral density function is the Fourier transform of the auto-
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covariance function: 

+0S 

S (w) = At S CT^At (14.5) 
k=-® 

The reader should be made aware that the notation in this chapter 

will differ from that in Appendix I. Also, subscripted variables and 

functions may appear with actual subscripts or with an index in parenthe&es. 

The s angling interval in all equations will be represented by At. 

For practical analysis considerations, the time series generated by 

a moving average process is one-sided: 

K 
y(t) = S b Ç(t-n) (14.6) 

n=0 

The process and the resulting time series are characterized by the K+1 

coefficients {b^: n= 0, 1, 2,3, ...K}. The value of y(t) depends only 

' S 
upon the b^ and K+1 present and past values of §(t). 

The time-series for a one-sided moving average process can be synthe

sized numerically by first generating the white noise sequence with a ran

dom number generator and then doing the linear operations described by 

Equation 14.6. This gives 

y(t) = b^^(t) + b^:(t - 1) + ... + b^§(t - K) (14.7) 

for all t = 0, +1, +2, .... 

The power spectrum for a moving average process is obtained by using 

a digital filtering analogy. A digital filter convolves the white noise 

sequence with the filter coefficients {b^} to produce the output time 

series. Since the spectrum of the input white noise sequence is flat, the 
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spectrum of the output time series will be the amplitude response of the 

filter multiplied by the constant input spectrum. 

A look at the convolution and z-transform properties of a digital 

filter will help provide better understanding of the autoregressive spec

tral estimator. The output, y(t), of a digital filter is the convolution 

of an input time series, x(t), with the filter weights {b^J: 

y(t) = Z b x(t-k) t = 0,+l,+2, ... (14.8) 
k=-00 

To obtain the filter weighting sequence we define the impulse response of 

a linear filter, g(t), as the filter output in response to a delta function 

input. In the sançling domain, the sampled impulse response or weighting 

sequence is: 

b^ = -^ g(nAt) (14.9) 

From z-transform theory we know that the convolution theorem in the trans

form domain (Equation 5A.8) is: 

Y(Z)= G(Z)X(Z) (14.10) 

The next step is to define what is meant by the transfer function, G(Z). 

From basic filter theory we know that a complex transfer function, 

G(cu), is defined for sinusoidal inputs (x(t) = sin cut) by using the relation 

y(t) = |G((JU) I sin (ut+0(cu)) (14.11) 

and for coop lex sinusoidal inputs (x(t)=e ) as: 
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y(c). |G(m) (14.12) 

In the same manner, the transfer function for the digital filter is ob

tained by applying a complex sinusoidal input (x(t) =e^^'^) and factoring 

the output into the product of the input and a transfer function as shown 

in (14.12). When this is done for the convolution sequence given in (14.8) 

the result is: 

y(t)= Z b^e'^j'»<t-kAt) ̂ ^+jc«t ^ ^^^-jtukAt (14.13) 

k=-o> k=-® 

The complex transfer function for the digital filter can now be identified 

as: 

G(u))= S b (14.14) 
k=-® 

The filter weights or sampled impulse response can be determined from the 

transfer function by the transform: 

\ ̂ 2TT «T G(W)e'*'^^^^ duu (14.15) 
-TT 

The single-sided z-transform for a causal filter is determined from (14.14) 

by substituting Z = e to generate the Z-(^ransform of the filter 

weighting series: 

K 
G(Z) = B(Z)= Z b Z"^ (14.16) 

n=0 ° 

The continuous spectral density for the moving average process can 

now be determined by driving the digital filter with white noise and 

determining the output spectrum. The relationship between input and output 

spectral densities (Equation 5B.8) becomes: 
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S (lu) = )G((ju) l^S (uu) 
Y X 

= !G(UU) I^S^(UJ) (14.17) 

Using (14.5). and (14.14) the final resuit is: 

S (uj) = ûtCT^l Z b 
y k=-œ 

(14.18) 

Likewise, the power spectral density for the one-sided process becomes: 

K 
Sy((u) = b X a "  

n=0 * 
(14.19) 

The continuous spectral density can also be obtained by evaluation of the 

z-transform on the unit circle: 

Sy(u)) = Ata^lB(Z)|^, Z = |uu|^^ (14.20) 

The continuous spectral density function for a moving average process is 

periodic with period 2n/At. Usually only the principal spectrum, |uu| ̂ rr/At, 

is of interest. 

We now define a time series {x(t): t = 0,+l,+2, ... } as representing 

a weakly stationary (covariance stationary) finite autoregressive process 

if it satisfies the K-th order autoregressive series: 

K 
Z ax(t-n) = §(t) t = 0,+l,+2... (14.21) 

n=0 ° 

The autoregression must satisfy the conditions (Koopmans, 1974) 

E{x(s) Ç (t)}=0 for all s<t (14.22) 

and: 
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K 2 
a^ = l, a^5^0, Z a^<= (14.23) 
° ^ n=0 

The finite autoregressive series is now written as: 

x(t) - S a x(t-n) = §(t) (14.24a) 
n=l ° 

x(t) - a^x(t - 1) - agX(t - 2) - ... - a^(t -K) = 5(t) (14.24b) 

The power spectrum for a finite autoregressive series can be obtain 

both from a digital filtering analogy and from a one-to-one correspondence 

with a moving average process. A digital filter operating on the time 

series {x(t): t = 0,+l,+2 ... } produces the white noise sequence 

{§(t): t = 0,+l,+2, ... }. This special type of filter is referred to as a 

prewhitening filter by most authors (see Chapter IX). It is a simple 

matter to define the relationship between input and output spectral densi

ties as 

S^(w) |A(ou) l^ = Sç(cu) (14.25) 

and consequently: 

2 
S ^ ,2 S (u)) = (14.26) 

|A(U)) I ^ lA((i))r 

The 2-transform of the digital filter is 

K 
A(Z) = S a Z'° (14.27) 

n=0 " 

and the transfer function in the frequence domain is obtained by evaluating 

A(Z) on the unit circle: 
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|A(UU) I = 1A(Z) j (14.28) 

Koopmans (1974, p. 218) has shown that if A(Z) has no zeros on or outside 

the unit circle, the linear filter can always be inverted and 1/A(w) is 

square integrable. 

The equivalence of a finite moving average and a finite autoregressive 

series can be shown by applying a Fourier series expansion for the inverted 

filter and constraining the Fourier coefficients to those which will sat

isfy the boundary conditions of Equations 14.22 and 14.23. The infinite 

moving average formulation is 

and it follows from Equations 14.1, 14.12, 14.13, and 14.14 that the finite 

autoregressive series can be expressed as a moving average: 

+® 

x(t) = Z bl(t-k) (14.30) 
k=-eo 

In order for the moving average to satisfy the boundary conditions in 

Equations 14.22 and 14.23 it is necessary and sufficient (Koopmans, 1974) 

that: 

for s = (t - 1), (t-2), ... This can be shown by taking the expected 

value using Equation 14.30: 

+j#(u)) 
(14.29) 

eCx(s) I (t)} = 0 (14.31) 
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ECx(s)§(t)}= S b E{§(s-k)|(t)} (14.32) 
k=-® 

Using the identity, E{§(S -k) | (t)}= 6(s- j - t)a , (14.32) can be further 

reduced to show: 

2 2 
Z b 6(s-j-t)a =b^ V = 0 (14.33) 

k=-oo ^ S-t 

and this inçlies the boundary condition: 

b_j^ = b_2 = b_2 = ... = 0 (14.34) 

For s = t, the expected value in (14.32) becomes 

E{x(t) § (t)}=b^CT (14.35) 

but from Equation 14.24a we know that 

E{x(t) § (t)} = EC|^(t)} = a^ (14.36) 

so that = 1 is the final boundary condition. 

In conclusion, a weakly stationary time series satisfying Equations 

14.24 will have a one-sided moving average representation given by: 

K 
x(t) = 1 + Z b S(t-n) (14.37) 

n=l " 

For a covariance stationary finite autoregression to exist, it is suffi

cient that all the zeros of B(Z) lie inside the unit circle. The z-trans-

form of a one-sided moving average is related to the z-transform of the 

autoregression as: 

A(Z) = 5^ (14.38) 
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The continuous power spectral density function for a finite auto-

regression is written as: 

• S^(u)) = a^At|l + S (14.39) 
n=l 

or: 

2 

S^(ou) (14.40) 

|1- Z a 
n=l ^ 

The stationary autocovarlances for the autoregressive process are defined 

as: 

C(k) =E{x(t) X (t-k)} = C(-k) (14.41) 

The Yule-Walker equations (Equation A1.31) relate the autoregression co

efficients, a , and the stationary autocovariances: 
n 

K 
C(k) = Z a C(k-n), k=l,2, ...K (14.42a) 

n=l 

C(k) =a^C(k-1)+a2C(k-2) + ... a^C(k-K) (14.42b) 

A useful estimate of the variance of the white noise sequence can be ob

tained by combining Equations 14.36 and 14.37 to give: 

K K 
ECx(t) § (t)} = E£x(t) S ax(t-n)}= S a C(k) = CT (14.43) 

n=0 ^ n=0 ^ 

This estimate may be written as: 

2 K 
a =C(0)+ r a C(n) (14.44) 

n=l ^ 
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To obtain the estimated power spectral density of a finite sançle 

{x(t): t = 0, 1,2, ... (M-1) } of the "true" time series {x(t)}, the estimated 

autocovariances, C(k), and the estimated autoregressive coefficients, a^, 

must be determined by appropriate numerical estimation procedures. 

One connnonly used approach to this estimation problem is to compute 

estimated autocovariances from the definition: 

A 1 A A 
C(k) = z—T T. x(t)x(t-k) 

t=0 -
(14.45) 

Next the Yule-Walker equations are used to define a linear set of equations 

in ($(k) and a : 
n 

6(1) 

6(2) 

II 

6(k) 

6(0) ($(1) ... ($(Krl) 

(5(1) ($(0) (5(K-2) 

($(K-1) C(K-l)... 6(0) 

A 
^2 

A 

(14.46) 

For initial calculations, the order of the process has been estimated as K. 

The KxK covariance matrix is inverted and the autoregressive coefficients 

are computed from: 

A 
*k 

6(0) . . . C(K-l)' 
6(1) . . . 6(K-2) 

6(K-1) 6(0) 

-1 

6(1) 

6(2) 

6(K) (14.47) 

The spectrum of the estimated white noise sequence is generally not a con-
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stant unless the sample is very large. The estimated autocovariance 

function for the approximate white noise sequence is written as: 

^(k)=E{Ç(t) l(t-k)} (14.48) 

Substituting the autoregressive series of Equation 14.24a for both ^(t) 

and f(t-k) gives 

A K A # K . * 
R_(k) = E{S a x(t - n) Z ax(t-p-k)} 
^ n=0 ^ p=0 P 

K . K ^ 
= Z a Sa E{x(t - n) X (t - p - k) } 
n=0 ^ p=0 ^ 

K K A X A 
= Z S a a C(n-p + k) (14.49) 
n=0 p=0 ° ̂ 

for k = 0,+l,+2, ... +(M-K). 

The estimated spectral function ̂ ^(lu) can be obtained from ^^(k) by using 

a lag window function and a digital Fourier transform. A spectral density 

estimate for the white noise sequence can also be obtained using Equation 

14.44 to give: 

= 2 a (5(n) (14.50) 
n=0 ^ 

The estimated spectral density for these numerical techniques can be 

written as 

C(m) ^ (14.51) 

)1-Z : 
n=l ° 

or: 
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*2 

i i a i )  » (14.52) 

I l - 2  a  e - j u m A C , 2  

n=l ® 

Other methods of obtaining best estimates of 4(k) and a^ may also be used 

effectively. Most methods employ a least-squares estimate that also con

strains the covariance matrix so it will remain positive definite. This 

will constrain the spectral estimators to be positive over the entire 

frequency range. îfore about these estimators and the proper constraints 

will be given in Chapter XV. 
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XV. MAXIMUM ENTROPY SPECTRAL ESTIMATION 

A. Introduction 

A new criterion for estimating the continuous power spectral density 

function for a random time series (Stanley, 1975) was first proposed by 

Burg (1967). This estimator, called the Maximum Entropy Method (MEM), 

essentially maximizes the average entropy (Newman, 1977) over the informa

tion bandwidth using the estimated autocorrelation function. MEM was de

veloped as a technique to minimize the effects of observer bias and reduce 

certain types of processing error on the spectral estimates. For example, 

one of the most noticeable differences between MEM processing and other 

commonly used techniques is that no window function selection is required. 

It is important for the reader to realize that MEM spectral analysis 

is not meant to be a replacement for other techniques and it is not vastly 

superior to others. As with any estimation technique, MEM has its own 

strengths and weaknesses based upon an assumed process model. When reading 

the published literature on MEM it is most important to carefully assess 

the various assumptions and boundary conditions used to derive the pub

lished results. 

As discussed previously in Chapter IX, all spectral estimators must 

use a particular model to fit empirical data. In addition, most apply 

smoothing and all apply extrapolation or a periodic extension to the data 

to obtain infinite data functions which conform to the selected criteria. 

Once an infinite estimate is obtained, the spectral density can be found 

using basic theory (Chapter IV). A summary of the commonly used models 

will help to put MEM spectral analysis in proper perspective. 
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The model for Fourier transform spectral analysis is based upon a 

periodic extension of the empirical data function. Constraints on this 

extension include assuming that the observation period is equal to the 

Fourier period T^, that the signal is bandlimited, and that the number of 

discrete spectral components does not exceed the number of data samples 

(adequate sampling). This model gives excellent results for many applica

tions but can have serious deficiencies if the true process is not periodic. 

In Fourier transform spectral analysis only the amplitude spectrum is 

usually computed because the power spectrum is a trivial extension (Chapter 

XII, Section C). Many users object to using a periodic extension assump

tion and an amplitude spectrum for analyzing data. These users often 

prefer the Blackman-Tukey method. 

The Blackman-Tukey model for spectral analysis assumes a zero exten

sion of the estimated autocovariance function. This zero extension assump

tion is emphasized by the use of a lag window function which guarantees a 

zero value beyond some chosen lag value T^. Although this assumption is 

often unrealistic, it gives good results in many applications. Users of 

the Blackman-Tukey method most often complain about lack of spectral 

resolution, inefficient computation and use of empirical data, and nega

tive spectral conçonents. 

A rigorous discussion of the properties of the various spectral esti

mators was given in Chapters VIII, IX, and X. As a rule the most commonly 

used power spectrum estimators compute an estimate of the autocovariance 

function, apply a window function to this estimate, and obtain the power 

spectrum from the Fourier transform of the result. This technique produces 
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an estimate that has the following deficiencies: 

1. The inverse transform cannot reproduce the original estimated 

autocovariance function. 

2. The lag window introduces spectral smoothing which decreases 

spectral resolution. 

3. The lag window may produce a modified autocovariance function 

which could result in negative spectral components. 

4. Most estimates of the autocovariance function use less data as 

the lag value increases thereby increasing statistical variability. 

5. The estimate of the autocovariance function may be badly truncated. 

6. The arbitrary choice of a lag window function may tempt the ob

server to choose the one that produces the "most agreeable" 

spectrum. 

All of these deficiencies can be minimized or eliminated by using the MEM 

spectral estimator. The following results are obtained with MEM: 

1. The estimate is constrained so that the inverse transform will 

exactly reproduce the original estimated autocovariance function. 

2. MEM does not explicity use a lag window function and empirical 

test results show it produces a frequency resolution superior to 

other methods when short data records are employed. 

3. MEM constrains the autocovariance matrix to be nonnegative def

inite so that only positive spectral components are produced. 

4. MEM incorporates nearly all of the input data function for each 

step in the autocovariance estimate and hence reduces the problem 

of statistical variability for large lag values-
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5. MEM produces an estimated autocovariance function that can be ex

trapolated to any desired order of lag and consequently eliminates 

the truncation problem. 

6. Since MEM is a data adaptive method, the selection of a lag win

dow is implicit in the process and its use is transparent to the 

observer. 

The maximum entropy criterion for spectral analysis will not reduce the 

intrinsic spectral estimation errors (Chapter IX) of aliasing, statistical 

variability, and lack of stationarity. These continue to be important 

practical problems associated with all spectral estimation methods and 

must be dealt with on an individual basis. 

The Maximum Entropy Method of spectral analysis has the following 

limitations and known deficiencies: 

1. The validity of the spectral estimate relies on the assumption 

that the measured process can be adequately modeled by a finite 

autoregressive series. This requires a "noise-like" data function 

and a spectrum that is both continuous and bandlimited. 

2. The observer must select an arbitrary order for the autoregressive 

process that is used to model the data. This selection intro

duces observer bias into the estimate because it controls the 

amount of spectral smoothing and hence resolution. A nonsub-

jective solution to the problem of selecting an optimum order has 

not yet been solved (Parzen, 1969). 

3. For estimations using a large order autoregression, the MEM algor

ithm may become numerically unstable. This occurs because the 
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locations of the zeros of the characteristic polynomial shift 

slightly due to numerical truncation and fall very near or on the 

unit circle. 

In spite of these deficiencies, the MEM technique represents a powerful 

tool for the estimation of time series spectra. Along with FFT, Blackman-

Tukey, and autoregressive techniques it should become a widely used method 

of data analysis. Its properties and applications will now be presented 

along with some derivations of fundamental concepts. 

B. Fundamental Descriptions for MEM 

The Maximum Entropy Method can be simply described as a technique for 

obtaining an infinite autocovariance function from finite data. The em

pirical time series is modeled with a finite order autoregressive series 

and the resulting spectral estimate is constrained by maximizing the 

average entropy. Practical algorithms may compute either the estimated 

autocovariances or the autoregressive coefficients. The power spectral 

density function is obtained by taking the Fourier transform of the auto

covariance function or by using the autoregressive spectral estimator. 

More than one viewpoint can be used to summarize the fundamental 

characteristics of MEM spectral analysis. The three most conmon view

points will now be discussed. The original viewpoint is that MEM is 

equivalent to maximizing the average spectral entropy of a Gaussian, band-

limited time series subject to the constraint that the estimated power 

spectral density and the estimated autocorrelation function form an exact 

Fourier transform pair (Chen and Stegen, 1974; Newman, 1977). This can 

also be interpreted as determining an optimum power spectral density func
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tion that keeps the entropy of the empirical time series stationary with 

respect to the selection of extrapolated values of the estimated autocor

relation function (Radoski et al., 1975). 

A second viewpoint is that MEM is equivalent to an "optimum" method 

for extrapolating a truncated autocovariance function (Veltman et al., 1972). 

The criterion for "optimum" is that the entropy of the time series model 

must be maximized at each step of the extrapolation. Van den Bos (1971) 

has demonstrated that this criterion is equivalent to fitting the data with 

a finite autoregressive process model with a least-square-error criterion. 

This is sometimes referred to in the literature as fitting an all-pole 

model to the data. This nomenclature comes from the z-Transform descrip

tion of the transfer function used to model the power spectrum (Stanley, 

1975)- This type of estimator contains only poles (no zeros except at the 

origin) in the z-plane. 

The third viewpoint is that MEM is equivalent to modeling the desired 

spectrum with the output of a filter driven with white noise. The enç)iri-

cal data function is processed to obtain the estimated filter spectral 

response. The filter has been variously termed a prewhitening filter, a 

Weiner prediction filter, and a least-squares inverse filter (see Chapter 

XIII). An equivalent mathematical model for the empirical data function 

is the convoltuion of a finite autoregressive series and a white noise 

series (Radoski et al., 1975). In this type of processing the input time 

series is converted to a \rfiite noise sequence (See Equation 14.24a) and 

the prewhitening filter is used to characterize the spectrum (Ulrych, 1972b). 
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A fourth viewpoint, which is actually a combination of the others, is 

that the entropy loss of the filter should be maximized subject to the con

straint that the inverse transform of the MEM spectral estimate yield the 

exact autocorrelation values. As with the third viewpoint, a filter is 

found that can generate the correct autocorrelation function when driven 

with white noise but it must also reduce the entropy by a maximal amount. 

This viewpoint emphasizes the First Principle of Data Reduction (Chapter 

VII) because it minimizes the biasing effects of missing data. 

C. Entropy Definitions for MEM 

The concept of entropy is used in many scientific disciplines. Entropy 

as a thermodynamic state function in statistical mechanics is a measure of 

the randomness of the system. Entropy quantifies the lack of knowledge 

about the exact state of the system at any instant in time. In information 

theory (Beckmann, 1967) the entropy of a source of information is defined 

as the average self-information per state of the system. In communication 

systems the entropy is often called the average information rate in bits-

per-symbol. The entropy of a signal will be maximum Wien all states or 

symbols are equally likely. Two concepts that will be used in MEM deriva

tions are those of a entropy power and entropy loss in a linear filter. 

Mathematical definitions will now be given for the various entropy quanti

ties. 

The entropy of a discrete system of N states, E^, with probabilities, 

p^, is given by: 

N 
H = -  Z  p  t o ( p „ )  ( 1 5 C . 1 )  

n=l ^ ^ 
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If H is maximized subject to the constraint that the sum of all probabili

ties is equal to unity, the distribution of probabilities that yields max

imum entropy is given by (Beckmann, 1967): 

^ n= 1, 2, 3, ..., N (15C.2) 

A convenient definition for the entropy of a continuous distribution 

of a single variable is (Goldman, 1953; Beckmann, 1967): 

H = - J  p(x)tn(p(x))dx (15C.3) 

If H is maximized subject to the constraint that the variance of x remains 

constant, the calculus of variations solution gives a Gaussian distribution. 

The entropy of a Gaussian distribution is given by: 

H = 4n(2neo^)^ (15C.4) 

It is also true that, for a constant entropy, a Gaussian distribution has 

the smallest variance of all possible distributions. 

An excellent discussion on the effect of a linear transformation on 

entropy has been given by Goldman (1953). In essence Goldman shows that 

the entropy of a signal vector y^ produced by a linear transformation of 

the vector x^ is given by 

Hy = H^+tn|a_| (15C.5) 

where a.. is the determinant of the transformation matrix defined by: 
ij 

N 
y.= Z a. X. (15C.6) 
^ j=l J 
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Random noise may be characterized by sampling points in the time domain 

which are statistically independent and have distributions which are Gaus

sian. The entropy per degree-of-freedom for random noise is 

h =-tn(2TRE 
n n 

(15C.7) 

where a is the variance of the noise. To obtain the total entropy it is 
n 

necessary to multiply by the Nyquist frequency, f^ = l/2At, and the dura

tion or observation period, T^, of the signal: 

®n ^n (15C.8) 

The entropy power (Goldman, 1953) of a signal is; 

- 2G; : 
(15C.9) 

For Gaussian noise the entropy power is equal to the variance. Entropy 

power is always less than or equal to the time average power. 

Entropy loss in a linear filter is a function only of the frequency 

response of the filter and is most easily described in the frequency domain. 

The derivation for entropy change in a linear filter is analogous to that 

for a linear transformation since filtering is a linear transformation 

process. For N sampling points in the frequency domain the entropy at the 

output, Hy, is related to the entropy at the input, using (Goldman, 

1953) 

N 
H =H^+ E WG;|G(f^)r) 

n=l 
(15C.10) 

where G^ is the filter gain and G(f) is the normalized frequency response. 

In the limit as the frequency sanpling interval goes to zero and the 
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frequency response becomes continuous, the entropy change becomes: 

^2 2 
= I 4a(G,|G(f)|')df (15C.11) 

o 

The entropy-per-degree-of-freedom can be obtained by dividing (15C.11) by 

1 % 2 2 
hy=h^+ 2^1 to(G^lG(f)l )df (15C.12) 

o 

The change in entropy is obtained both from the filter shape and the filter 

gain. The integral can be separated into: 

& 2 
tolG(f)! df + ̂a(G^) (15C.13) 

N O 

In most of the literature and for the rest of this text the filter gain is 

assumed to be normalized to unity and only the integral term is considered. 

The entropy power at the output of the filter is given by: 

I Zhy 
y (15C.14) 

If the class of power spectra to be analyzed by MEM is restricted to 

those that can be represented by a linear filter of finite length, we can 

define an average spectral entropy density or spectral entropy rate as: 

1 
^nCS^(f)]df (150.15) 

The power spectral density function, S^(f), is two-sided and analogous to 

|G(f)1^. This is the definition that will be used for MEM (Lacoss, 1971). 
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D. Mathematical Bases for MEM 

A good mathematical description of maximum entropy spectral analysis 

can be presented using any or all of the viewpoints discussed in Section B. 

Three somewhat independent derivations will now be given. 

1. Maximum average spectral entropy basis 

The basis first proposed by Burg (unpublished 1967) maximizes the spec

tral entropy subject to the constraint that the inverse Fourier transform 

gives the exact values of the finite autocorrelation function. For a Gaus

sian process with a continuous bandlimited power spectrum, this entropy 

measure (Equation 15C.15; Smylie et al.,.1973) is represented by the inte

gral: 

Restrictions on S^(f) are tdiat it be nonzero in the Nyquist frequency in

terval and that it be representable as the power transfer function of a 

linear filter. is considered to be the "true" power spectral density 

tent. This would be the folding frequency for a sampling system or the 

Nyquist frequency for a bandlimited signal. 

From previous theoretical considerations we know that the power spec

tral density function and the autocorrelation function form a Fourier 

transform pair as represented by the Wiener-Khinchine relations (Equation 

4A.9). From transform theory it follows that the inverse Fourier transform 

J 'ki[s^(f)]df (15D.1) 

of the process and is the maximum frequency of nonzero spectral con-
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of the continuous and bandlimited spectral density produces an autocorrela

tion function which may exist over the entire autocorrelation domain. It 

also follows that the autocorrelation function cannot be finite in extent 

because two finite functions cannot form an exact Fourier transform pair 

(uncertainty principle). If either the autocorrelation function or the 

spectral density are exactly known, the other may be computed using the 

trans formation: 

A capital R is now used to represent autocorrelation but it has the same 

meaning as small r in Chapter XIII. 

Of course for practical problems the data function is finite and only 

an estimate of the true power spectrum can be obtained. A finite data 

function produces an estimated autocorrelation that is both truncated and 

statistically variable. Both of these important effects must be accounted 

for in a practical MEM spectral estimator. As a start we will first con

sider the problem of truncation. 

To be able to satisfy Equation 15D.2 the truncated autocorrelation 

function must be extrapolated in some optimum manner. To examine this 

possibility the autocorrelation function is separated into a "known" com

ponent, R^(T), defined in the interval |T| and an "unknown" component 

R^(T) representing the autocorrelation for all lags The inverse 

transform relationship of (15D.2) can now be separated into the two com

ponents : 

(15D.2) 
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r â 
df = R^^CT) T 

m 
(15D.3) 

m 
(15D.4) 

T will be defined as the maximum lag at which values for R (T) are 
m X 

known. The so-called "known" component plays a dual role in MEM analysis. 

For developing the theory it is assumed to be a truncated version of the 

exact or "true" autocorrelation function while in actual application it is 

an estimate based on empirical data. For the analysis to follow it will 

be assumed to be exact while in Sections F and G it will be an estimate. 

When the maximum entropy estimate satisfying (15D.3) is obtained, the 

"unknown" component given by (15D.4) is completely specified. It can be 

referred to as a maximum entropy extrapolation of the autocorrelation func

tion. From this viewpoint the maximum entropy criterion is equivalent to 

the a priori assunqition that the "best" spectral estimate must be the most 

random of all possible estimates that is still consistent with the "known" 

(but truncated) autocorrelation function. This also means that the extra

polated part of the autocorrelation function adds the least amount of "in

formation" to the spectrum. 

The derivation that now follows is based on the calculus of variations 

material presented in Part J of Appendix I. The entropy measure that will 

be maximized is given in Equation 15D.1 and the constraint equation will be 

a sampled version of (15D.3). The extra degrees-of-freedom which allow h^ 

to be maximized are represented by Equation 15D.4. 
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First, the use of a sampled version of Equation 15D.3 must be justified. 

Now because we are interested only in S(f) defined in the interval |f]^ f^ 

it is possible to represent S(f) either by Equation 15D.2 or as a periodic 

function with period 2f^. The mathematical restriction imposed by this 

representation is that we never try to use it for ]f|>f^. The fact that 

a continuous and periodic spectrum can be represented by an infinite sum 

of sampled autocorrelation values (Stanley, 1975) leads to the selection 

of the following infinite series and basis set for S(f): 

S (f) = AT Z R (f f (15D.5) 
* k=-m * N 2AT 

The sampling period in the autocorrelation domain is related to the spectral 

width by =l/2f^. To verify that this basis is valid, it is substituted 

into the following sampled version of (15D.2): 

I S (f)e'^j^^^'^df = R (nAT) (15D.6) 

After substitution, integration and summation can be interchanged to give 

the form: 

+» 
AT Z R^(kAT) J g+j2TTE(n - k) ^ R^(n6T) (15D.7) 
k=-o * 

To show that this is an identity, the form of the integral is compared with 

the representation of the Kronecker delta function given in Equation A2.33. 

This representation is obtained by identifying ^ = 1/2AT and T = 2f^ to give: 

AT J e+j2TTf (n - k) AT^^ _ ( 15D. 8) 
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The identity in Equation 15D.7 becomes 

+00 

S R (KAT)5 = R (nAT) (15D.9) 
k=.® * nK X 

and we have shown the representation in (15D.5) to be valid. 

A corresponding sampled representation for Equation 15D.3 is obtained 

by defining a maximum known lag index M= T^/AT. This gives 2M+1 known 

lags to define the bandlimited spectrum. The constraint equation and cor

responding series definition for â(f) become: 

J â (̂f)e'̂ ^̂ '̂ ''̂ '̂ df = R^(nûT) (15D.10) 

{n= 0, ±1, ±2, 

s (f) = AT Z R (15D.11) 
k=-M ^ 

From the calculus-of-variations solution and Equations 15D.1 and 

15D.10 we can identify the following terms for the Euler-Lagrange equation: 

F(f,â^(f)) = ̂  toCâ^(f)] (15D.12) 

= A_(f)e+j2nfaAT (15D.13) 

The Euler-Lagrange equation is: 

A A 
[F(f,Ê (f)) - I X^(n)Q ( f , S  f f ) ) ]  = 0 (15D.14) 

3& (f)- ^ ' X» ' ' " X' , a n=-M 
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The partial derivatives are 

^ I ^ = +j2TTfnAT 
as 

(15D.15) 
^ 4^/f) 

and the equation is evaluated to be: 

1 m 
^ & (n)e 
n=-M 

+j2TTfnAT ^ Q 
(15D.16) 

From this solution we see that both the Lagrange multipliers and the inverse 

spectrum must be finite. This reaffirms the constraint of nonzero SffX on 

MEM spectral estimates. 

The next step in the solution is to solve the Euler-Lagrange equation 

This solution is substituted into the constraint equation and the 2M+1 

values of the autocorrelation function are used to solve for the 2M+1 

values of \^(n), the Lagrange multipliers. The solution is completed when 

the \^(n) are used in the explicit equation for S^(f). The explicit equa

tion is obtained by rearranging (15D.16): 

It is pointed out at this time that Equation 15D.16 is a finite and sampled 

version of Equation 15E.6. 

The direct method of solving 15D.17 is to use a Laurent series expan

sion and equate it term-for-term to Equation 15D.11. An alternate method 

which derives the spectral estimate directly in terms of the autocorrela

for S^(f) in terms of the Lagrangian multipliers, X^(n), and frequency, f. 

A 

+j2TTfnAT 
(15D.17) 
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tion coefficients used in the Burg algorithm (Section G) will be presented. 

The derivation essentially follows one given by Ulrych in Snylie et al., 

(1973). 

The z-transforme of Equations 15D.17 and 15D.5 are equated to give: 

A"RR(Z) = Z^G-JZNFAT (15D.18) 

The polynomial, A(z), represents the double-sided z-transform of the series 

in Equation 15D.17 and, as such, is an ideal (not estimated) representation 

of the Lagrange multipliers. Conceptually, R(z) is also the infinitely 

long Laurent series expansion of 1/A(z). If the z-transform of (.15D.11) is 

represented by ATR(Z), then R(z) and &(z) must have equal coefficients for 

like powers of z. We also know that \^(n) = \ (-n) and R^(nA.T) = R^(-nAT) 

because A^(f) must be a real function. Since these coefficients are Hermi-

tian, the polynomials R(z) and A(z) can be factored into the product of two 

polynomials and Equation 15D.18 can now be written as (Smylie et al, 1973): 

ATC(z)C*(l/z*) = ^ T (15D.19) 
4^Q(z)Q (1/z ) 

The new polynomials are defined by: 

R(z)=C(z)C*(l/z*) (15D.20) 

A(z) =Q(z)Q*(l/z*) (15D.21) 

The symbol Q for the polynomial must not be confused with that for the 

generalized function in the Euler-Lagrange equation of (15D.13). A similar 
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process for obtaining a polynomial product is the spectral factorization 

for rational spectral densities discussed in standard texts on signal anal

ysis (Cooper and McGillem, 1971). 

The system of equations which represent the maximum entropy solution, 

for example Equation 13.48 in matrix form, can be written in series form as 

where a^(0) =-1 and 5^(k) is the Kronecker delta function. The mean-square 

We now implement a mathematical technique that will help simplify the 

solution. The system of equations represented by (15D.22) is augmented with 

the arbitrary series 

(15D.22) 

error of the estimate will be represented by P which is equivalent to the 

_ A2 
notation CT . 

h(k) =0 {k=0, 1, 2, ..., K] 

#0 [k=-l,-2, -3, ..., -K] 9 • • • 9 

(15D.23) 

to give: 

S a^(n)R (k + n) = (k) - h(k) 
^0 K X KO 

{k = 0,+l,+2, ...,+K} 9  • • •  9  

(15D.24) 

The z-transform of (15D.24) is the start of the solution: 

A(z)R(z) =P^ + H(z) 

A(z) = 1 - a^(l)z - a^(2)z^ - ... - a^(K)z^ 

H(z) =h(-l)z"^ + h(-2)z~^+ ... +h(-K)z"^ (15D.27) 

(15D.26) 

(15D.25) 
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A(z) is the z-transform of the digital filter (Chapter XIV) characterizing 

the autoregressive process. 

Since R(z) also consists of Hermitian coefficients it likewise can 

be factorized into the special form 

R(z) = U(z)U*(l/z*) =U(z)V(z)/z^ (15D.28) 

where the product polynomials are defined by: 

U(z) = u^+ u^z + ,..+u^z^ (15D.29) 

* K * K-1 * 
V(z) = u^z + u^z + ... + u^ (15D.30) 

Substituting (15D.28) into (15D.25) and dividing gives the desired result: • 

A(z)U(Z)=^ + -4^ (15D.31) 

The rather elaborate means by which we have arrived at Equation 15D.31 are 

necessary so that the concluding steps, including a polynomial division, 

are easier. 

Typical terms on the left-hand side of (15D.31) are: 

A(z)U(z) = u^+ [u^ - a^(l)u^lz+ ... + [u^ - u^a^(K) ]z^ ... 

- [u^a^CK- 1) + ag(K)Ug_^]z^ ^-Uga^(K)z^ (15D.32) 

This is a polynomial of degree +2K. Typical terms for the polynomial 

divisions on the right hand side are: 

+ (15D.33) 

"o % "o 
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Since the exponents on the left-hand side are positive and those on 

the right-hand are negative, equating equal powers of z on both sides of 

Equation 15D.31 gives the trivial result; 

"o = — (15D.34) 

% 

The coefficients of all other powers of z are zero so (15D.31) reduces to 

the result: 

A(z)U(z)== — (15D.35) 
u 
o 

In a similar manner we can also obtain the result: 

A*(l/z*)U*(l/z*) ~ (15D.36) 
o 

Combining these results and relating them to (15D.28) gives the z-transform 

of R^(kûT) in terms of the z-transform of the autoregressive series: 

P 

â(z) =U(z)U*(l/z*) = 1 — (15D.37) 
A(z)A (1/z ) 

Substituting this result into Equation 15D.11 and evaluating the z-

transform on the unit circle between 0 and TT gives the maximum entropy 
r 

estimate of the power spectral density function: 

, • AtP 
(15D.3S) 

From Equation 15D.26 we get the identity 
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= 1 - Z a(k)e"j2nfkAT (15D.39) 

k=l ^ 

and Equation 15D.38 can be put in the usual form given by Equation 15F.1. 

In the cause of academic curiosity we can determine the Lagrange multipliers 

from 

A(Z) = A(Z)A*(1/Z*) (15D.40) 
K 

^diere: 

K 
A(Z) = Z \ (n)z"* (15D.41) 

n=-K 

The solution is obtained by equating like powers of Z in the equations: 

+K K K 
E \ (n)z"*= [1- Z fl(k)z'^][l- Z a_(k)z"*] (15D.42) 

n=-K ^ k=l k=l ^ 

This completes the derivation of the maximum entropy spectral estimate. 

Alternate derivations are given in the next two parts of this section. 

2. Autocorrelation function extrapolation 

The following description of the MEM spectral estimator is based on 

the desirable property that the autocovariance matrix for a real finite 

autoregressive process must be semipositive definite (Veltman et al., 1972). 

This implies that the determinant of the autocovariance matrix must be non-

negative. This condition guarantees that the resulting estimated power 

spectral density function will be nonnegative over the interval |f | 

The analysis using the autocovariance matrix is based on the fact that it 

can be used to obtain the estimated spectrum by applying the Fourier trans
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form directly or by generating the autoregressive coefficients (Chapter XIV) 

and using the autoregressive spectral estimator. 

As in the previous section we will assume that the first 2N + 1 auto

correlations are known exactly and that the process is stationary and 

Gaussian. The maximum entropy extrapolation problem is to find the (N+1) 

autocovariance value by maximizing the entropy defined by the autocovari-

ance matrix. 

To simplify the matrix notation for this section we will use the ab

breviation r(n) =R^(nAT). The autocovariance matrix of order N will be 

represented by R(N) where the matrix elements are defined by: 

= r( j - i) (15D.43) 

The autocovariance matrix for an (N+l)-th order autoregressive process 

is given by: 

R(N) = 

'r(O) r(l) . . . r(N) 

r(-l) r(0) . . . r(N - 1) 

r(-N) r(-N+ 1) . r(0) 

(15D.44) 

For real processes the correlation function is even, r(n)= r(-n), so it 

would be possible to rewrite the matrix with all positive subscripts. To 

emphasize the fact that the function is double-sided we will keep the nega

tive notation for the moment. 

The autocovariance matrix, R(N), is extrapolated to one order higher, 

R(N+1), by maximizing the entropy measure defined by (van den Bos, 1971 

and Snylie et al., 1973): 
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h = -taC(2'ne)^^^detCR(N + 1) (15D.45) 

This is the entropy of a N + 2 dimensional Gaussian probability density 

function with covariance matrix R(N + 1). To maximize h with respect to the 

unknown correlation, r(N + l), the first derivative is set to zero: 

âh 5det CR(N + 1)1 ^ G 
ar(« + l) 

This is equivalent to finding r(N +1) such that; 

5detCR(N-H)1 ^ 
3r(N+l) 

(15D.46) 

(15D.47) 

From Equation 15D.46 we see that R(N + 1) must be positive definite so that 

det[R(N +1)] is positive and nonzero. The derivative of det[R(N+l)] is 

obtained by first reducing R(N+1) to the next lower order (this is the 

matrix minor of element N+2^ and then applying a lowering operator to 

all indices. This gives: 

Bdet [R(N+1)1 
ôr(N+l) 

= det 

r(-l) r(0) . . . rCN-l)" 

r(-2) r(-l) . . . r(N-2) 

r(-N-l) r(-N) . . . r(-l) 

= 0 (15D.48) 

Two additional useful properties of det[R(N + l)l can also be demonstrated. 

The first is that it is a quadratic function of r(N+l): 

detCR(N+ 1)] = a^ + a^r(N+ 1) + a^r^CN+l) (15D.49) 

This is obtained by actually expanding det[R(N+l)], setting r(-m) = r(m), 

and collecting terms. The coefficients and are functions only 
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of the elements of R(N). The second property is that the second derivative 

of det[R(N +1)] is always negative 

S det[R(N-H)] ^ _2 det[R(N- 1)] (15D.50) 

Sr^(N + l) 

because det[R(N- 1)]> 0. From the quadratic representation we can immedi

ately identify the coefficient to be: 

CÏ2 = -detCR(N-l)] (15D.51) 

The quadratic now takes the form: 

det[R(N+l)] = Qr^ + a^r(N+1) - la^lr^CNi-1) (15D.52) 

A typical plot of det[R(N + l)] as a function of r(N+l) is a parabola that 

is concave down. A valid solution can exist only in the region det[R(N+1)] 

> 0, The parabolic form also guarantees that there is only one mavirnitm in 

the valid region. Since the ordinate values of the parabola are symmetrical 

about the maximum, it also follows that maximizing the entropy is equivalent 

to choosing a value for r(N+l) that lies at the midpoint (Veltman et al-, 

1972) of the region where det[R(N+ 1)]>0. 

The final solution for the unknown autocorrelation value is obtained 

by differentiating Equation 15D.52 and solving for r(N + l): 

= a^-2|g^|r(N-H)=0 (15D.53) 

û^i 0^1 

+ ^ 2 det CR(N .  1) 1 
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A satisfactory solution requires that be nonzero otherwise the extra

polation would terminate. The determination of requires several matrix 

manipulations starting with Equation 15D.48. To eliminate notation com

plications caused by negative indices the even property of r(n) is invoked 

to give: 

det 

r(l) r(0) . . . r(N-l) 

r(2) r(l) . . . r(N-2) 

r(N) r(N-l) . . r(0) 

r(N+l) r(N) . . . r(l) 

= 0 (15D.55) 

Expanding the determinant using the last row and the method of minors 

produces the result: 

N-
r(N + 1) det CR(N - 1) ] + Z r(k) ( _ L )^+^+V = 0  

k=l 
(15D.56) 

The the corresponding matrix minors of the elements in the bot

tom row. Finally we can identify the coefficient as: 

N 

k=l 
(15D.57) 

In conclusion, the MEM extrapolation algorithm is simply a step-by-

step computation of higher order autocorrelations to achieve an arbitrarily 

high order matrix. The matrix manipulations indicated by Equation 15D.57 

are not implemented in practical algorithms because of the computational 

effort involved. In the next section an equivalent estimate based on an 

autoregressive model is derived that has better computational efficiency. 
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3. Autoregressive or predictive-filter basis 

The third mathematical description of MEM involves the definition and 

calculation of a prewhitening or predictive filter. In Chapter XIII it was 

shown that predictive filtering and autoregression are equivalent viewpoints. 

Before starting a detailed analysis it will be helpful to briefly review 

some basic system analysis concepts that will help tie together the equiva

lent viewpoints. 

A continuous-time, linear, time-invariant system with a single input 

x(t) and a single output y(t) is illustrated in Figure 15D.1. The differ

ential equation which describes the system is given by: 

M M-1 

a. i2_+ a. ^ + 
^ , M ^-1 , M-1 

at at 

b„ + b 

K-l 
dx 

K dt* K-l dtC-l 
4- • . .  + b X 

o 
(15D.58) 

x(t) 
Linear 

System 

y(t) Linear 

System 

Figure 15D-1. Continuous-time. Linear, 
Time-invariant System. 

An equivalent discrete-time system, is likewise described by a linear 

difference equation (Stanley, 1975) with constant coefficients as given by: 

a^y(n) + a^y(n - 1) + a^yCn -2)+... + a^y(n - M) = 

b^x(n) + b^x(n- 1) + ... +bj,x(n- k) (15D.59) 



www.manaraa.com

242 

The z-transform definition for the transfer function of a discrete-time 

system is obtained from (15D.59) by applying a unit inç>ulse: 

b +b z"^ + b Z'^+...+b Z'^ 
H(Z) = -2 (15D.60) 

a^ + a^Z + a^Z + ... + 

A special form of this transfer function is used in MEM spectral analysis 

and is called the "all-pole" model. The terminology "all-pole" model (Van 

den Bos, 1971) in the literature refers to a transfer function that has no 

zeros in the z-plane. As a consequence, the numerator polynomial in Equa

tion 15D.60 has all zero coefficients except for b^. 

If the input to the filter is white noise we say the output time series, 

y(t), was generated by a moving average process (See Chapter XIV), Equations 

14.6 and 14.19). The output time series power spectral density is completely 

characterized by the coefficients, b^. 

If the input to the filter generates an output which is white noise 

we refer to the input time series as representing a finite autoregressive 

process of order M. The power spectral density function is completely 

specified by the coefficients, a^ (Equation 14.40). The "all-pole" model 

is represented by the finite autoregressive series given in Equation 14.24. 

The Yule-Walker equations are used to relate the finite autoregression 

coefficients, a^, and the stationary autocovariances. These relationships 

are presented in detail in Equation 14.42. This linear set of equations 

is expressed in matrix form in Equation 14.46. After manipulating the ma

trix form, changing the notation so C(n)=r(n), and adding a row of order 

N+1, the Yule-Walker equations can be expressed as: 
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r(N-l) 

r(N-2) 

r(N+l) r(N) r(l) 

1 0 

-a- 0 
1 

0 

(15D.61) 

This is a homogeneous system of N+1 linear equations and from Cramers 

rule the characteristic determinant of the system must be zero; therefore: 

det 

"r(l) r(0) . . r(N-l) 

r(2) r(l) . . r(N-2) 

r(N+l) r(N) . . r(l) 

= 0 (15D.62) 

Since this solution is identical to that obtained by maximizing the entropy 

(Equation 15D.55) the autoregressive model is equivalent when the autocorre

lations are known exactly. If it is desirably to obtain the extrapolated 

autocorrelation values using an autoregressive model, they are easily ob

tained from the following modification of Equation 14.42a: 

N 
r(N+l) = S a r(N+l-n) 

n=l * 
(15D.63) 

This requires a knowledge of exactly N values of and N values of r(k). 

The power spectrum obtained from the autoregressive coefficients is equal 

to that obtained by a Fourier transform of the autocorrelations. The auto

regressive technique is superior to the extrapolation method in the last 

section because the coefficients, a^, are easily obtained from the known 

autocorrelations by using Equation 14.47. The practical implementation of 

an MEM spectral estimator is presented in Sections F and G. 
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E. The Companion Function for R^(T) 

At the beginning of the author's research, one of the first problems 

attempted was to relate the maximum entropy viewpoint of spectral analysis 

to the Wiener-Khinchine relations (Equations 4A.8 and 4A.9). The concepts 

of MEM were not well-understood and it was hoped that this approach would 

provide the needed insight. The result of this effort was the development 

of the generalized calculus-of-variations formulation for integral con

straints given in Part J of Appendix I. The maximum entropy measure dis

cussed in the previous section and its integral constraint equation are an 

application of the calculus-of-variations solution that was derived. 

This approach to the investigation of the properties of MEM led to the 

discovery of a conqjanion function, X^(T), for the autocorrelation function, 

R^(T), which for a certain class of processes gives an equivalent descrip

tion of the power spectrum of the process. The results that follow will 

seem peculiar because the constraint equation completely specifies S^(f) 

and thus allows no degrees of freedom. The reasons for presenting this un

usual approach are to show that MEM is consistent with the Wiener-Khinechine 

relations for specific classes of spectral functions and to show the dis-

coveiry of the companion function. 

The entropy measure to be maximized is given in Equation 15D.1 and the 

integral constraint equation is given by the Fourier transform relationship: 

Comparing Equations 13D.1 and 15E.1 with Equations Âl.72 and Â1.73 in Part J 

of Appendix I we can identify; 

-H» 

(15E.1) 
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/ 

F(f,S^(f)) = toCs^Cf)] (15E.2) 

Q(T,f,S^(f)) = (15E.3) 

-1 
The factor (4f^) will be neglected in this section. 

The appropriate Euler-Lagrange equation is (Equation Al.83): 

+eo 

- J \(T) § dT = 0 (15E.4) 

Evaluating the partial derivatives in (15E.4) and solving for S^(f) in terms 

of X^(T) and f gives the solution: 

@ ' rh) # ° 

rhr ' f = 0 (15E.6) 
X -® 

This important result (See also Equation 15D.16) states that the conçlex 

conjugate of the Fourier transform of the continuous Lagrangian multiplier, 

X^(T), is equal to the reciprocal of the power spectral density function 

for the process: 

rh) 

This representation is restricted to processes which have a well-behaved 

reciprocal spectral density. The spectral density must be continuous and 

nonzero for all f. This limits the representation to stochastic processes 

^en the frequency is not bandlimited. For bandlimited processes the dis
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cussion in Section D applies and the reciprocal spectral density is always 

well behaved. 

Continuing with the calculus-of-variations method, the solution for 

S^(f) is substituted into the constraint equation to give the relationship 

between X ( T) and R ( T) : 
X X 

This integral equation can be solved for as a function of R^(T) by 

taking the direct Fourier transform of both sides. This procedure gives 

the following results: 

1 (X^(T) ] (15E.9) 

y) = (151.10) 

Finally the solution for X^(T) is used in (15E.6) to derive equations for 

S^(f) as a function of X^(T) and R^(T) : 

S ( i )  = — ( T ) }  (15E.11) 
(T) ] " 

The power spectral density function, S^(f), is specified completely by the 

Fourier transform of the autocorrelation function (Wiener-Khinchine rela

tions) or alternately by the reciprocal of the con^lex conjugate of the 

Fourier transform of the continuous Lagrangian multiplier function, . 

Because of this analogy, the function X^(T) will be called a companion 

function for the autocorrelation function, R^(T). 
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After a considerable amount of effort was expended on trying to deter

mine an interpretation for the conçanion function, a simple solution was 

seen that now will appear trivially obvious. Consider Equation 15E.9 for 

the case of a "real" process. The autocorrelation function is real and even 

and so is the conçanion function- The equation can then be rewritten as 

1 (15E.12) 

or 

1 = S (f)A. (f) (15E-13) 

where A^(f) is the spectral function represented by the Fourier transform 

of Comparing Equation 15E-12 with Equation 5B.8 we can make the 

following interpretations: 

1. Equation 15E.12 represents a linear filter operating on a stochastic 

input to produce a vrfiite noise output. In short: an ideal pre-

\diitening filter. 

2. S^(f) and R^(T) represent the filter input. 

3. A^(f) and \^(f) represent the filter transfer function v^ere 

A^(f)= |H(f)p. 

4. The output spectral density function represents white noise with 

unity amplitude, Sy(f) = 1. 

The Fourier transform relationships in (15E.12) can be replaced by the fol

lowing convolution integral: 

+« 

6(T) = J R^(t)X^(T-t)dt (15E.14) 

This is yet another way of representing the ideal prewhiténing filter. 
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Equation 15E.14 is analogous to (14.21) for a finite autoregressive process. 

Also compare (15E.13) and (14.25). 

In sunmary we can say that the companion function, X^(T), represents 

an ideal linear prewhitening filter and that the filter transfer function 

is specified by: 

For empirical data records the data function is finite and the esti

mated autocorrelation function is also discrete and finite. Furthermore 

the autocorrelation function is also statistically variable with the vari

ability increasing with lag. The exact autocorrelations used in the pre

vious sections will now have to be replaced with estimates. The second 

factor that enters the picture is the selection of the order of the process 

used to do the modeling. The order affects the resolution of the estimator 

and the numerical stability of the computer algorithm. 

Practical methods of implementing the MEM spectral estimator use the 

autoregressive model and confute the coefficients directly. This approach 

has the simplest numerical implementation because it can be done recursively 

and avoids the matrix manipulation needed in other approaches. This direct 

approach is the only practical one for large orders. The presentation to 

follow will show the methods employed to control statistical variability 

and to select a suitable order. 

To begin we will define all of the terms used in the autoregressive 

spectral estimator given by (Equation 14.52) 

(15E.15) 

F. MEM for Discrete and Finite Data 
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vrfiere: 

f 

& 

AT 

K = 

a2 

â^(f) -
S^iT 

K 
- Z 
k=l 

a^Ck) 
-j2TrfkAT 

(15F.1) 

frequency at which the spectral density is estimated, f is 

limited to the range, |f|^^. 

the Nyquist frequency or folding frequency determined by the 

sampling rate, f^ = 1/2AT. It will be tacitly assumed that the 

data function has been suitably preprocessed to eliminate aliasing, 

sampling interval or lag interval between samples in the autocor

relation domain. The lag interval is also equal to the sampling 

interval in the time domain, AT = At. 

the order of the autoregression used to model the process. For 

most applications K is never larger than approximately one-third 

of the total number of data function sangles. 

[a^(k) : k= 1,2, the estimated autoregressive coefficients 

used to model the empirical data function. A boundary condition 

for physical realizability is; a^(K) <1. 

Estimated power spectral density function at frequency f for a 

K-th order autoregressive approximation to the process. 

total mean-square error for a K-th order autoregressive model of 

the process. This is also the one-step prediction error given in 

Equation 13.36. It is also the estimated variance of the white 

noise sequence produced by removing the predictability in the data 
J 
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function (Equations 14.43, 14.44, and 14.48). This is sometimes 

referred to as the total error power of the prediction. 

The system of equations used to represent the maximum entropy solution 

was discussed in Chapters XIII and XIV (Equations 13.48 and 14.47). This 

matrix formulation is repeated below in the notation that will be used in 

this section: 

r(0) 

r(l) 

r(l) 

r(0) 

r(K) 

r(K-l) 

r(K) r(K-l). . r(0) 

1 '*2* 
1 

0 

0 

-

0 

(15F.2) 

We can now get down to the crux of the problem encountered in the 

practical application of MEM, autoregressive, or any other spectral esti

mation technique: 

How does one obtain "good" estimates of the autocorrela
tions, ^n), or the autoregressive coefficients, a_(k), 
directly from the finite data function? 

To begin, consider estimating the autocorrelation function: 

r(n) =E{x(t)x(t-n)} (15F.3) 

For a finite data function defined by {x(t): t = 0, 1, 2, ...,N-l} an un

biased estimator is: 

r(n) = ^ 
N- n 

N-In 1-1 
Z x(q)x(q+ |n|) 

q=0 
(15F.4) 
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It is unbiased because for large N it converges to the theoretical values 

defined by Equation 15F.3. This estimator becomes unsatisfactor for large 

lags because the amount of the data record used is so small that the vari

ability of the estimate becomes intolerably large (Jenkins & Watts, 1968). 

A common solution to this that appears in much of the literature is to bias 

the estimator with a triangular window function (Schwartz and Shaw, 1975): 

r'(n) = (1 - -^)r(n) (15F.5) 

This choice is adequate for some applications of spectral analysis and is a 

special case of the Blackman-Tukey method discussed previously. It is un

desirable in many applications because it causes smoothing in the estimated 

spectrxm. The estimator in Equation 15F.4 may actually produce an FFT with 

negative components. In fact there is no assurance that the covariance 

matrix will be positive definite (Jenkins & Watts, 1968). 

We now proceed to demonstrate the computation of the autoregressive 

coefficients directly. An earlier paper by LeVinson (1947) gives an excel

lent discussion on linear prediction and the least-squares prediction error 

criterion for obtaining the "best" filter coefficients. J. P. Burg (1968) 

modified the LeVinson algorithm to give an estimate that would guarantee 

that |a^(l)) would not exceed unity (Ulrych, 1972b). A brief presentation 

of linear filtering and prediction patterned after Levinson's treatment 

will now be given followed by a derivation of Burg's recursion method. 

Linear filtering and prediction can be briefly explained with the help 

of Figure 15F-1. As much as possible, notation will be patterned after 

Chapters XIII and XIV. A known signal x(k) is corrupted by white noise §(k) 
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to generate a corrupted signal y(k). This corrupted signal represents the 

data function in the spectral estimation process. The data function is 

then "optimally" filtered by a convolution with h(n). The "best" estimate 

of x(k) represented by x(k) appears at the output of the filter. The esti

mation error for the k-th sample is represented by G(k). The following 

equations apply 

y(k) = x(k)+ e(k) 

£(k) = x(k) - x(k) 

x(k) = Z h(n)y(k-n) 
n=0 

(15F.6) 

(15F.7) 

(15F.8) 

where K is the order of the estimate. 

x(k) 

e 
y(k) 

h(n) 

§(k) 

x(k) 

8(k) 

Figure 15F-1. Linear Filtering and Prediction 

A measure of the quality of the estimate is the expected value of the mean-

square error (Equation 13.36): 

ECe (k)} = E{Cx(k) - 2 h(n)y(k-n)f} 
n=0 

Ck=0,+l,+2, 

(15F.9) 
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Denoting this error by and expanding the expected value using Equation 

15F.6 gives: 

? K 
M = E{X (k)}-2 Z h(n)E{x(k)x(k - n) } 

n=0 

K 
- 2 Z h(n)ECx(k)§(k-n)} 

n=0 

K K 
+ S s h(n)h(m)E[y(k - n)y(k - m) } (15F.10) 
n=0 np=0 

By recognizing the appropriate autocorrelations and assuming x(k) and §(k) 

are totally uncorrelated we get: 

K 
M = R (0) - 2 Z h(n)R (n) 
® n=0 

K K 
+ 22 h(n)h(m)R (m-n) (15F.11) 
n=0 m=0 ^ 

It is important to note that I^(m - n) represents the autocorrelation func

tion of the generated or measured data. 

The best estimation in a least-square error sense for the filter coef

ficients is obtained when is minimized with respect to the h(n). The 

partial derivatives 

2M 
= 0 Ck=0, 1, 2, K} (15F.12) 

are evaluated to give 

an K 
= -2 R^(k) + 2 Z h(n)Ry(k-n) = 0 (15F.13) 
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v*ich for a system of K+1 equations: 

K 
T. h(n)R (m-=R (m) m=0,l, ...,K (15F.14) 

n=0 y X 

The minimum error of the estimation is obtained by substitution of (15F.14) 

into the double summation of (15F.11) to give: 

K 
M (min) = R (0) - Z h(n)R (n) (15F.15) 
® * n=0 * 

The optimum filter gives a best estimate of the x(k) in a least-squares 

sense. The solution to the system of equations given by (15F.14) is pre

sented as an iterative technique in Levinson's paper and is referred to as 

the Le Vinson algorithm. This completes the presentation on linear filter

ing and prediction except to state that the infinite data model used would 

have to be modified for finite data before it could be applied to a prac

tical filter synthesis problem. 

The Burg recursion also determines the linear prediction-error filter 

coefficients and minimizes the mean-square error of the estimate. The ap

propriate system of equations for the Burg recursion given by Equation 

15F.2 is analogous to Equation 15F.14 augmented by Equation 15F.15. It is 

interesting to note that Equations 15F.2 can also be written in series form 

(See Equation 15D.22) as: 

S aj^(n)r(k+n) = r(k)-^6^(k) {k= 0, 1, 2, ..., K} (15F.16) 

The best linear one-step predictor in a least-square error sense is given 

by (Equation 13.35): 
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A K 
x(t) = Z a^(n)x(t-n) (15F.17) 

n=l 

The one-step prediction error for a K-th order autoregressive model is the 

total mean-square error: 

= E{Cx(t) -x(t)]^} (15F.18) 

2 K 
= E{[x(t) - Z a^(n)x(t - n)] } (15F.19) 

For a finite data function defined by {x(n): n=0,l,2, ...,(N-1)] 

Burg suggests defining both a forward prediction error and a backward pre

diction error: 

K 
Cg(q) = x(q) - E a^(n)x(q-n) (15F.20) 

K 
Sj^Cq-l) = x(q - 1) - Z a^(n)x(q + n) (15F.21) 

To eliminate end effects the predictor subscripts must be limited to 

forward: K^q^(N-l) (15F.22) 

backward: l^qS(N-K-l) (15F.23) 

inclusive: K^q^(N-K-l) (15F.24) 

where K is the order of the estimate and N>K is the total number of data 

sangles. The mean-square error of a K-th order prediction would now be de

fined as the mean of the error for both forward and backward predictions. 

For N data samples: 
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1 (N-K-1) 

«K - (15F.25) 

The solution proceeds by minimizing with respect to the a^(n) in a re

cursive manner and solving the system of equations for the a^(n). A pro

cedure for implementing the Burg recursion in a manner similar to the Lev-

inson algorithm has been outlined by Anderson (1974). A derivation of this 

technique and a computer algorithm for implementation will be given in 

Section G. 

G. Burg MEM Recursion Algorithm 

This algorithm determines estimates of the autoregressive coefficients 

a^(n) which are "best" in the following senses: 

1. The coefficients generate a maximum entropy spectral estimate when 

used in Equation 15F.1. 

2. The entropy loss in a linear predictive filter is maximized. 

* 2 
3. The estimated mean-square error of a K-th order prediction, c^, 

is minimized. 

4. Equations 15F.2 are satisfied in a least-square error sense. 

5. |a^(K)I cannot exceed unity (Ulrych, 1972b). 

6. The autocovariance matrix is positive definite. 

7. No zero extension of the data is needed and no window function is 

used explicitly. 

For a finite data function defined by 

{x(t): t=l, 2, 3, ...,N} (15G.1) 
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the average mean-square total prediction error for a K-th order process can 

be written as: 

N-K K o 

\ 'kfi 

, N-K K 2 
+ 2(N-K) Z [x(t + K)- Z a^(k)x(t + K-k)] (15G.2) 

The reader should convince himself that the equation above is identical in 

every respect to Equation 15F.25. The form and subscript notation now used 

are more convenient and closely conform to those used by Anderson (1974). 

The in^lementation of Equation 15G-2 by the minimization of is done 

with a recursion which starts with order K = 1 and progresses to some maxi

mum value K = 2, 3, ..., K^. This procedure generates a 2x2, 3x3, ..., 

K. X K autocovariance matrix which is both positive definite and maximizes 
mm ^ 

the entropy. By generalizing this procedure it can be shown that the auto-

regressive coefficients are related by (Smylie et al., 1973); 

ag(k) = a^_^(k) - ag(K)ag_^(K-k) (15G.3) 

K=2, 3, ..., (N -1) 

k= 1, 2, ..., (K- 1) 

Using the notation, P^= a recursion for is obtained by using Equation 

15G.3 in Equations 15F.2 or 15F.16. It is: 

(15G.4) 

1 N 2 A 
P = ^ S x; = r(0) (15G.5) 
° ® t=l ^ 
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At each step in the recursive process is the minimum value of at 

that step. As can be shown using (15G.3) the only degree of freedom at each 

new step is the coefficient a^(K). To obtain the least-squares solution, 

the average prediction error should be minimized with respect to a^(K). This 

gives the following system of equations: 

34% 
= 0 K= 1, 2, (15G.6) 

aa^(K) 

It will be seen shortly that the solution for a^(K) vrfiich minimizes is a 

function only of x(t) and can be calculated directly. 

Another important feature of the technique is that the estimated auto

correlation functions can also be obtained recursively (analogous to the 

Yule-Walker equations) as 

A ™ A 

r(m) = S a^(q)r(a-q) (15G.7) 
q=l 

where r(0) is given by Equation 15G.5. This is analogous to the system of 

equations represented by (14.42). 

A convenient formulation of the solutions represented by (15G.6) has 

been given by Andersen (1974) and will now be summarized. First define 

a^(0) = -1 so in Equation 15G.2 can be rewritten as: 

^ N-K K 2 

\ 2(N-K) 

K 
+ (- S a^(k)x(t + K-k)) (15G.8) 

k=0 ^ 

Next define a^(k) = 0, k^K in the recursion of Equation 15G.3 (except for 
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the term shown explicitly as a^(K)) and substitute into (15G.8). With a 

change of sign inside the squared terms the results are easily determined 

to be 

+ (B^(t) - a^(K)B^(t))^] (15G.9) 

where: 

K 
B (t) = Z a^ .(k)x(t + k) (15G.10) 
^ k=0 

K 
B'(t)= Y a_ .(K-k)x(t + K-k) (15G.11) 
^ k=0 

t= 1, 2, N -K 

The value of a^(K) which minimizes as defined by Equation 15G.6 is easily 

determined since B^(t) and B^(t) are both independent of a^(K). Taking the 

partial derivatives of Equation 15G.9 as described by Equation 15G.6, we 

obtain the desired result: 

N-K 
2 S B^(t)B^(C) 

a^(K) = - (15G.12) 

Z B;(t) + B'^(t) 
t=l ^ ^ 

A single example of a first order autoregression will illustrate the dif

ference between estimating a^(K) with the Burg technique and using the 

estimated autocorrelations. The Burg technique gives: 
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N-1 
2 Z x(t)x(t+l) 

(15G.13) 

Z Cx^(t) + x^(t+l)] 
t=l 

The direct method gives: 

N-1 
^ Z x(t)x(t+l) 

•• -0 = M <"G.14) 

Z %: (t) 
t=l 

Both estimates are unbiased. The condition I^^CK) |<1 can be shown by ap

plying triangle inequalities to (15G.12). 

The final task that remains is to demonstrate useful recursion formulas 

for B^(t) and B^(t). Using (15G.3) in (15G.10) and (15G.11) and paying 

careful attention to the valid range of indices and previous definitions 

for a^(k) outside the normal ranges gives: 

B^(t) =B^_^(t) (15G.15) 

B^(t) =B^_^(t+l) -a^_^(K- l)B^_^(t+l) (15G.16) 

K=2, 3 (15G.17) 

t= 1, 2, (N-K) (15G.18) 

Bj(t)=x^ B^'(t) =x(t+l) (15G.19) 

This completes the presentation on the Burg MEM Recursion Algorithm except 

for a few summary comments. 
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It should be strongly emphasized that the Burg recursion reduces but 

does not eliminate the effects of statistical variability in the estimated 

coefficients. Also the effect of numerical truncation in a computer imple

mentation of the technique may introduce zeros in the numerator of Equation 

15F.1. The statistical variability of and consequently a^(K), increases 

with K. This can be interpreted as a reduction in the amount of data used 

for the estimate. The reader can verify this by examining Equations 15G.9, 

15G.10, and 15G.11. The quality of the estimate of S (f) as a function of 

K is best evaluated using both P^(or and the variance of the estimate 

2 
of We know from previous work that E[p^} = These factors will be 

discussed more in Chapter XIX. 
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XVI. ONE-BIT AUTOCORRELATION SPECTRUM 

Although the one-bit autocorrelation scheme of digital spectral analysis 

is well-known and widely used in radio astronomy (Weinreb, 1963), the method 

is not presented in most textbooks. This computationally simple digital 

technique makes use of the fact that only phase information is necessary for 

the determination of the shape of the power spectral density function of a 

Gaussian process. Amplitude information is necessary only for the deter

mination of the amplitude scale factor of the spectral density. 

To implement this technique, the data function, x(t) is processed by 

first sending it through a zero-crossing detector and then clipping the out

put to obtain digital logic levels. This process is described mathematical

ly as 

y(t) = sgn{x(t)} (16.1) 

or; 

f+l x(t) 2 0 
y(t) = < (16.2) 

1^-1 x(t) <0 

The digital signal, y(t), is then s angled at a uniform clock rate to code 

the samples for digital processing. The resulting digitized time series 

can be used to obtain the estimated autocorrelation function of y(t) by the 

following correlation process: 

1 N 
P^(T) = w ^ y(kAt)y(kAt + T) (16.3) 
y " k=l 

The estimate of the normalized autocorrelation function of the "undipped" 

signal is now obtained by the Van Vleck relation: 
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P^(T) = sinC^ Py(T)] (16.4) 

Finally, a normalized estimate of the power spectral density of the process 

is obtained by the Fourier transform: 

= K?{P^(T)] (16.5) 

The amplitude scale factor, K, may be found by measuring the power in the 

data function, x(t). 

A complete discussion of one-bit autocorrelation spectral analysis is 

given in Weinreb (1963). He derives the Van Vleck relation and also the 

mean and variance for the one-bit autocorrelation function estimate. He 

shows that, in terms of a large number of samples, N, the mean of the esti

mate is approximated by 

^ & (Py" (16.6) 

and the variance by: 

The hardware implementation of a simple one-bit crosscorrelator is 

relatively simple. The block diagram of a crosscorrelator designed by the 

author for radio astronomy research is shown in Figure 16-1. It is also 

possible to use the same system for autocorrelation if y(t) is a time-delayed 

version of x(t). 

For autocorrelation, it is simpler to provide the necessary time delay 

(or lag) by sampling the input signal and using digital delay techniques. 

The block diagram for a simple one-bit autocorrelator is shown in Figure 16-2. 
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One-bit autocorrelation techniques can be applied only when large 

amounts of data are available. The method offers simplicity in exchange 

for large data sets. Small data sets require the extrapolation and 

smoothing techniques inherent in methods such as MEM. 
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Figure 16-1. One-Bit Crosscorrelator 
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XVII. DATA REDUCTION SCHEMES 

The various conçuter programs written for data reduction are described 

in this chapter. Each discussion includes an introduction, a list of pro

gram variables, and an example run. Programs 01, 02, 03, and 04 are in

tended primarily to be tutorial aids. Programs 05, 06, and 07 are user 

oriented and designed to be used to process data. For this reason, the last 

programs will be explained in much more detail. Listings of the programs 

are given in Appendix III while further examples of their use are given in 

various chapters. The printed outputs for the programs are also given in 

Appendix III and the reader must refer to them for the examples. Each pro

gram number is keyed to an example in the appendix. 

A. PROGRAM 01 - Discrete Fourier Transform Testing 

1. Introduction 

This program was written to illustrate the digital Fourier transform 

and its inverse as derived in the text. The program consists of two sub

routines which can be used to illustrate various sanqjling effects on the 

estimates of the Fourier coefficients. The program is provided for user 

experimentation and as an exasçle. It is not intended for routine data 

processing. 

SUBROUTINE FSRS computes an output time series corresponding to input 

Fourier coefficients. It is a program implementation of Equation 12D.1. 

The program equations follow the more familiar Fourier series form given 

by Equation A2.2 in Appendix II. 
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SUBRODTINE UîSPTM conçûtes the Fourier coefficients from an input time 

series. It is a program implementation of Equation 12D.5. The program 

equations are the digital form of Equations A2.4 and A2.5 in Appendix II. 

2. Input/o-utput data definitions 

A(I) = 

B(I) = 

CMAG(I) = 

CMAGDB(I) = 

CPHASE(I) = 

DCV = 

FX(I) = 

FVALDE(I) = 

NS = 

TDEL = 

TF = 

TN = 

XDELTA = 

Fourier coefficients corresponding to the cosine inte

gral or even part of the input time series. 

Fourier coefficients corresponding to the sine integral 

or odd part of the input time series. 

Absolute magnitude of the i-th Fourier coefficient. 

Absolute magnitude in dB. 

Phase angle of the i-th Fourier coefficient referenced 

to the center of the input time series. 

Average or 'dc' value of the input time series. 

Output time series generated by SUBROUTINE FSRS. 

Input time series for SUBROUTINE UJSPTM. 

Total number of input samples of the time series (must 

be odd). 

Equivalent sampling interval in seconds. 

Fourier period, seconds. 

Observation period, seconds. 

Sample times for the output time series. 

3. Example 

The input for the example program is the Fourier coefficients a^ = 4, 

bg=l. The Fourier frequency is one Hertz and 21 samples are taken in an 

observation period of 3.1 seconds. 
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The program generates its own analysis data by using SUBROUTINE FSRS 

and the Fourier period ("true" period), T^. 

The complex Fourier amplitudes are computed from these 21 samples 

using SUBROUTINE LNSPTM. The user must remember that this routine requires 

neither a sampling time nor an observation period. These are only used to 

interprété the output results. 

The last step is the confutation of the estimated time series with a 

factor of four increase in time resolution. This output can be compared to 

the "true" series to judge the quality of the estimate. 

The numerical results for this example are compared in Figure 12D-3. 

The quality and numerical stability of the estimate can often be 

judged by applying Parseval's theorem to the results. First, the complex 

amplitudes are determined using (A2.13): 

c = 0 c-=2 c, = 2 
o 1 —1 

Second, from Equation 12.A8, the sum of the squared amplitudes gives: 

+3 2  ,  
R(0) = E jc 1 =8.50 volts 

n=-3 ^ 

From the estimated time series, the result approximated by (123.29) is 

2N+1 

^="8.70volts2 

and finally, from the estimated complex coefficients (with c^=-0.132): 

^ = |c 1^ + 2 2 jc I = 8.67 volts^ 
' o' , ' n' 
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The estimates give good results when compared to the true value thus in

dicating good quality and numerical stability. Refer to PROGRAM 05 for 

more details on this method of verifying results-

B. PROGRAM 02 - Estimated Kronecker Delta Function 

1. Introduction 

This program evaluates the approximation to the Kronecker delta func

tion. It is included to show the high degree of accuracy in approximating 

Equation 12D.11. Figure 11-1 shows another application of the program. The 

practical usefulness of the routine is limited to analysis and testing of 

signal processing schemes. 

2. Input/output data definitions 

DELTQR = Matrix elements of the estimated Kronecker delta. 

M = Maximum row order. 

N = Maximum column order. 

Q = Row index of DELTQR. 

R = Column index of DELTQR. 

RF = Fourier period in seconds. 

TN = Observation period in seconds. 

3. Example 

The example run illustrates the result when the Fourier period and the 

observation period are equal. DELTQR is defined for both positive and 

negative indices. Diagonal elements are unity and off-diagonal elements 

are better than thirteen orders of magnitude smaller. 
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C. PROGRAM 03 - Estimated Spectral Amplitudes using Kronecker Delta 

1. Introduction 

This program is a simple example of the application of the estimated 

Kronecker delta function to computing spectral estimates. The algorithm is 

specialized to real (zero phase angle) amplitudes and must be rewritten for 

complex amplitudes if the user so desires. The routine is intended as an 

example of spectral mixing errors caused by an observation period unequal 

to a multiple of the Fourier period. Equation 11.20 is a prototype for the 

algorithm. 

2. Input/output data definitions 

C(Q) = Estimated spectral amplitudes. 

CTRDE(I)=Input ('true') spectral amplitudes. 

M = Maximum index on input spectral anq>litudes. 

N = Index corresponding; to 2N + 1 sauries. 

Q = Index for double-sided spectral amplitudes. 

TN = Observation period in seconds. 

IF = Fourier,period in seconds. 

3. Example 

The data function has a Fourier frequency of 1 Hertz (T^ = 1) and has 

been sampled 21 times in a period of 3.1 seconds. The true spectral com

ponents are 2.0 and 0.38 at 1 and 3 Hertz respectively. The estimated 

spectral components at zero frequency and intervals of (3.1)~^ Hertz are 

listed in the printout. 

At 0.968 and 2.90 Hz., the estimates are 2.038 and 0.356 respectively. 

Although these are reasonably accurate, spectral mixing has introduced 
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several large conçonents at other frequencies. The component at 0.645 Hz. 

is -0-253 which is approaching the size of the true component at 3 Hz. This 

effect is present in every spectral estimator and must be considered tdien 

evaluating the quality of the estimate. Notice also that the average value 

of the estimate is not zero. 

D. PROGRAM 04 - Discrete Fourier Transform Analysis 

1. Introduction 

This program evaluates the discrete Fourier transform in its most fun

damental form. The complex coefficients evaluated are those necessary for 

the complex series representation (Equations A2.8 and A2.9). The algorithms 

evaluate Equations 12D.5 and 12D.6 and also do linear regression on the in

put data to remove an undesired linear trend. For purposes of better evalu

ation, the estimated complex amplitudes are used to generate an estimated 

time function with four times more time resolution than the input. 

SUBRODTINE UiSPTM conqmtes the complex Fourier coefficients based on 

the input time series and observation period. The algorithm is an imple

mentation of Equation 12D.5. 

SUBROUTINE FSRS is used to generate a time series from Fourier coeffi

cients and time period information. The algorithm is an inq>lementation of 

Equation 12D.6. 

2. Input/output data definitions 

A(I) = In-phase or "real" conponent of the DFT output. 

B(I) = Quadrature or "imaginary" con^onent of the DFT output. 

BZERO = Intercept point from linear regression. 
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B1 = 

CDB = 

CMAGDB = 

CMA.G = 

CPHASE = 

CMAGN(I) 

CPHASN(I) 

DCV = 

FREQ = 

FSAVE(I) 

FVALUE(I) 

FX(I) = 

LINREG = 

NLS = 

NS = 

SCALE = 

TDEL = 

TF = 

TN = 

273 

Slope from linear regression. 

Component power in dB relative to unity total power. 

Magnitude of each spectral component in dB relative to 

the confuted amplitude after scaling. 

Magnitude of the estimated Fourier coefficient. 

Phase of the estimated Fourier component in degrees. 

Normalized magnitude relative to unity total power. 

Phase in degrees. 

Average or dc-value of the input time series. 

Frequency corresponding to each amplitude estimate. 

Initial input time series data saved for comparison 

purposes. 

Input time series data after linear regression. 

Estimated time series with, increased resolution. 

A user selected data preprocessing option. LINREG = 0 

chooses the input data function for spectral estimation 

ïrfille LINSEG =1 selects the time series after linear 

regression modification. 

Ninnber of data samples for use in SUBROUTINE I2ISFTM. 

Number of data samples in the input time series. 

User selected scale factor for computing spectral ampli

tudes in relative dB. 

Data sampling interval is seconds. 

Fourier period in seconds. 

Observation period in seconds. 
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YEAR = Average value of the input time series. 

YF(I) = Sample values of the straight line determined by linear 

regression. 

3. Example 

Time series data for the example was provided by Mr. Wai Ling Tsui 

(Tsui, 1976). The time series is 41 samples of the output of a phase-

switched interferometer. The radio source is Hercules A (3C348) and the 

data was taken 29 July 1975. 

The scientific objective is to obtain an estimate of the natural fringe 

frequency of the source. This is obtained by computing the digital Fourier 

transform of the time series data shown in Figure 17D-1. The resulting 

estimated spectrum is given in Figure 17D-2. The plot is smoother than the 

printed data because zero-filling (concatenation) was used to improve the 

output resolution. The peak used to estimate the fringe frequency occurs 

at 2.11x10 Hertz. The true fringe frequency is predicted to be 1.95 x 

10 ^ Hertz. This result is typical of what might be expected for DFT spec

tral estimation. 
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Figure 17D-1. Time Series Data for the DFT Example 
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3C3«48 HERCULES A 
29 JULY 1975 

DFT spectrum 
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Figure 17D-2. DFT Spectral Estimation 
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E. PROGRAM 05 - Fast Fourier Transform Spectral Analysis 

1. Introduction 

This program implements a Fast Fourier Transform (FFT) routine to do 

spectral analysis. It is intended to be used for routine data processing 

and has features which include such preprocessing options as average value 

removal and data conversion to standard variable form. Output data options 

are also included that provide suppression of unwanted output during routine 

operations. 

The program will accept an arbitrary number of input data points and a 

resolution option provides an increase in output resolution (but not accur

acy) that is helpful in analyzing and plotting results. These features are 

acconçlished by adding zeros (zero filling or concatenation) to the time 

series to bring the total number of input data values to a factor of. 2^ 

where n is an integer. The FFT subroutine must have 2^ data points to oper

ate properly. Another feature is that, in addition to giving the usual 

aliased FFT output for 2°^ points, the program does proper scaling and com

putes the true amplitude spectral density function. It also monitors the 

Nyquist frequency to guarantee that no output above the folding frequency 

is given. Finally, an estimate of the double-sided power spectral density 

function is given using the squared-amplitude definition. 

SUBROUTINE FFAST is adapted from a FFT routine given by Steams (1975, 

Appendix B). The method is described as time decomposition with input bit 

reversal. 

Â flow diagram describing the essential features of the program is given 

in Figures 17E-la and 17E-lb. 



www.manaraa.com

278 
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Figure 17E-la. PROGRAM 05: Fast Fourier 
Transform An^litude Spectral 
Density 
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Figure 17E-lb. PROGRAM 05 
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2. Input data definitions 

NDC = The processing option for the input data function. The user 

has a choice of letting the FFT operate directly on the in

put data function X(T), (NDC = 0), the zero-mean data function 

XMDC(T), (NDC =1), or the data function converted to standard 

variable form XSV(T), (NDC = 2). 

NEESL = The resolution option for the FFT display. A nonzero sel

ection will add a power-of-two resolution increase for the 

FFT output. For exançle, NRESL = 3 will increase the output 

3 
display resolution by a factor of 2 . 

NS = The total number of time samples in the input data function. 

The user must dimension program variables accordingly. 

PTOPT = A printing option used to control the printed output of the 

program and used to suppress unwanted output. PTOPT is a 

binary word of the form; (NPTl, NPT2, NPT3, NPT4). NPTl 

controls the printing of the input data functions. NPT2 con

trols the printing of the FFT conqjlex output. NPT3 controls 

the printing of the amplitude spectral density. NPT4 con

trols the printing of the power spectral density. Use a 1 

if printing is desired and a 0 to suppress printing. 

SNAME = A name or label in FORMAT (5A4) used to identify the data 

record. 

XTDELT = Sampling interval for the input time series, seconds. 

X(T) = Input time series data. Units of volts will be assumed for 

sinq)lified presentation. 
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Output statistics 

DCV = Average value or estimated mean of the data function. Volts. 

2 
XBAR2 = Mean-square value of the input data function. Volts . 

XVAR = Unbiased estimate of the variance of the input data function, 

Volts^. 

STDEV = Standard deviation. Volts. 

Output data definitions 

A(N) = In-phase or "real" component of the FFT output. Volts. 

B(N) = Quadrature or "imaginary" component of the FFT output. Volts. 

CMAG(I) = Absolute magnitude of the discrete spectral component ob

tained from the discrete Fourier transform (DFT), Volts. 

FMAG(N) = Absolute magnitude of the FFT output. Volts. 

F PHASE (N) =Phase angle of the FFT output MOD TT. Degrees. 

FR(I) = Fourier frequencies of the spectral estimates, Hertz. 

KMAX = Total number of independent and nonredundant spectral com

ponents . 

N = 2* KMAX, the total number of data pairs used in the FFT sub

routine. 

S (I) = The estimate of the double-sided power spectral density func-

2 
tion. Volts /Hz (Watts/Hz in 1 ohm). The printout gives only 

the positive frequency values. 

XX(I) = The estimate of the double-sided amplitude spectral density 

function, Volts/Hz. The printout gives only positive fre

quency values. 
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XMDC(I) = The input time series with the average (or 'dc') value re

moved. 

XSV(T) = The input time series converted to standard variables which 

are derived from X(T) by subtracting the average value and 

dividing by the standard deviation. 

XTIME(I)=Sançle times for the input data function in seconds. This 

indexed time is used for plotting routines. 

5. Example 

An excellent example for illustrating many of the features of the FFT 

is given by Steams (1975). The following example incorporates the same 

essential features. The data function may be written in the continuous 

form as: 

t a o  

(17E.1) 
otherwise. 

The Fourier transform of this function is determined from integral tables 

to be: 

e sin t 
f(t) = 

CO 

F(juj) = J e'^sin t e"^"*^dt ^ (17E.2) 
0 (2 - yj ) + j2uj 

The absolute magnitude of the Fourier transform is: 

|F(jm) I (17E.3) 
(4+cu 

This is the amplitude spectral density estimated by the program. The pro

gram prints only the positive frequency values because the transform is 
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symmetrical. For the reader's interest, the phase function is: 

0_( uu) = ARCTANr ] ( 17E.4) 
(2- œ ) 

The program does not confute this result because we are assuming interest 

only in the spectral densities. 

The program input is 15 samples of Equation 17E.1 starting at zero and 

going in steps of ^t=0.3 seconds. The estimated amplitude spectral density 

is shown in Figure 17E-2 and compared with the exact results given by Equa

tion 17E.3. The folding frequency for the given sampling rate is: 

° 2iî ° 

As would be expected, the estimated amplitude spectral density shows the 

effects of aliasing due to components in |F(juu) | beyond the folding frequency. 

Also, the truncation effect of finite sampling introduces further high fre

quency components. The estimated amplitude for f = 1.46 Hz is 106% too high 

while that for f = 0.21 Hz is only 0.3%, too high. These effects are common 

in most FFT spectral estimates. 

Figure 17E-3 shows the estimate when the resolution is increased by a 

2 
factor of 2 (NSESL=2). It is important to notice that the accuracy of 

the estimate remains unchanged and only the resolution is increased. Figure 

17E-4 shows the estimated power spectral density for the increased resolu

tion. 
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NRESL= 0 

Frequency-

Figure 17E-2. Basic Resolution of FFT Estimate 

0.5 

NRESL =2 

Frequency 

Figure 17E-3. Increased Resolution for FFT Estimate 
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Figure 17E-4. FFT Estimate Proportional to 
the Power Spectrum 

Parseval's theorem provides a useful check of the stability and 

accuracy of the estimate and can be used to verify the correctness of the 

program. Using integral tables it is possible to show that: 

r (e ̂  sin t) ̂dt = J* , =1/8 volts^/Hz 

•^0 4+ur 

The integral in the frequency domain can be numerically integrated by the 

following routine to give 

ÛFX(0) + 2AF S X^(NAF) = 0.1249 volts^/Hz 
n=l 
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where: 

^ " 2KMAX At " 0-208 Hz. 

In the time domain, the result is: 

15 2 2 
At Z X. = 0.1248 volts /Hz 
i=l ^ 

These results may be compared directly with the standard deviation of the 

input data function. These agreements are very good even though aliasing 

has produced an estimate with considerable error near the folding frequency. 

Printed along with the amplitude spectral density function are the 

absolute magnitudes of the Fourier series components that would be used to 

represent the input data function. These amplitudes are related to the 

density function by the equation: 

A ^ 
c^ = AFX (nAF) 

Refer also to Equation 11.13. 

An example of the effects of •sAite Gaussian noise on the estimate is 

given in Chapter XIX and a detailed discussion presented in Chapter XII, 

Section D. 

F. PROGRAM 06 - Estimation of Single-Sinewave Parameters 

1. Introduction 

This program implements a digital Fourier transform amplitude spectral 

estimate for a single frequency conçonent with a frequency that may be con

tinuously varied. The input is assumed to be a s ingle-frequency sinewave 
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plus band11mi ted Gaussian noise. For a selected frequency below the Nyquist 

frequency, it will conçute a "best" fit. The fit is "best" in the sense 

that the amplitude and phase represent an orthogonal component of a discrete 

Fourier series which can represent the input data function. . 
t 

The estimate is improved if the input data is first preprocessed to 

remove any linear trends. To guarantee a zero-mean data function, the pro

gram computes the mean value and removes it before doing the spectral esti

mate. The actual algorithms are based on Equations 13.13 through 13.18. 

These results will be presented here in a slightly different manner to pro

vide a better understanding of the estimator. 

A continuous conçlex amplitude estimate (not an amplitude density) is 

defined as 

« -j ? 

«(F) = -5^ S %(KAC)E ° (17F.I) 
k=-N 

where At = T^/(2N4-1). Discrete coefficients are defined at the frequencies 

corresponding to f^ = n/T^. In general, the continuous complex amplitude is 

defined for any frequency between zero and the Nyquist frequency. 

If 6(f^) is represented in complex notation 

è(f^) = Qr(f^)+jP(f^) (17F.2) 

the complex components can be computed from the following algorithms: 

2N+ 1 
2 

k=l 

1 ZN+1 , 
of(f^) = 2N + 1 ^ x(kAt) cos (k-N - l)At] (17F.3) 

1 ^+1 
^ x(kAt) sin[^(k-N-l)At] (17F.4) 

o ^ + i k=l ^o 
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This method of defining the summation index forces the phase angle to be 

referenced to the center of the input time series. From Fourier analysis 

(Appendix II), the complex amplitudes are related to the usual a and b co

efficients as follows (Equation A2.13): 

(17F.5) 

For the definition of continuous estimates this becomes: 

a(f^)=2a(f^) (17F.7) 

b(f^) =-2 e(f^) (17F.8) 

The absolute magnitude of a complex amplitude estimate is: 

lè(f^)l = [a\f^) + f (f^)]^ = J [af(f^)+b2(f^)]% (17F.9) 

The absolute magnitude of a real frequency component is the sum of both 

positive and negative frequency contributions; 

d(f^) = 2lc(f^)l (17F.10) 

The phase angle for the complex component is 

P(f ) 
^^(f^) = ARCTAN C^;^] (17F.11) 

while for the real component it is: 

*d(fo) = *c(fo)-27°° (17F. 12) 
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The terminology "real" and "complex" refer to the observable sinusoid and 

its double-sided mathematical representation. Finally the "residue" time 

series is defined as: 

x^(kAt) = x(kAt) - d(f^) sin (k-N-l)At] (17F.13) 
o 

The program output prints the input parameters and the input data func

tion statistics. The input time series and the zero-mean time series are 

also printed. Next, the magnitude, frequency, and phase of the best-fit 

sinewave are given. The "residue" time series is computed and its statis

tics are printed. Finally, the zero-mean input, sampled sinewave, and 

residue are printed. 

It should be emphasized that this technique is not superior to doing a 

complete FFT on the input data. It has advantages in its simplicity and 

selectable frequency but the FFT gives an estimate of all components as 

compared to only one. 

2. Input/output data definitions 

CMAG = Absolute magnitude of the complex coefficient defined in 

Equation 11.15 and evaluated at the chosen frequency. 

CPHASE = Phase angle of the conçlex coefficient in degrees. 

DMA6 = Amplitude of the "best-fit' sinewave. 

DPHASE = Phase angle of the "best-fit" sinewave in degrees referenced 

to the center of the input time series. 

FREQ = Frequency in Hertz at which the "best-fit" sinewave is 

evaluated. 

FS(I) = Sinewave estimate evaluated at the sampling times. 
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NS = The total number of time samples in the input data function. 

SNAME = A name or label in FORMAT (5A4) used to identify the data 

record. 

TDELT = Sangling interval for the input time series, seconds. 

TZERO = Period for which the sinewave approximation is evaluated. 

X(I) = Input time series data. 

XMDC(I) = The input time series with the average value removed to give 

a zero-mean time series. 

XR(I) = This is a time series generated by subtracting the sinewave 

from the zero-mean input data. It is referred to as the 

"Residue" time series. 

3. Input/output statistics 

DCV = Average value or estimated mean of the time series. 

STDEV = Standard deviation. 

XBAR2 = Mean-square value. 

XVAR = Unbiased estimate of the variance. 

4. Example 

The time series data for this example is the same as used for PROGRAM 

04 except a linear regression analysis has been performed to remove any 

linear trend. The first printout, the input parameters, shows the total 

number of samples (NS = 41), the period of the desired spectral component 

(T^ = 49.26 seconds), and the sampling interval (At = 60 seconds). The sta

tistics for the input data function are computed and printed to be used for 

comparison with final results. For this example, the input time series 
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and zero-mean time series are equal because the data was previously processed 

to remove the mean value. 

The next output is the desired "best-fit" sinewave describing the in

put time series 

f = 128.46 sin(^ t- 1.839) (17F.14) 
o 

where : 

T =4.926x10^ seconds. 
o 

1 -3 
Frequency = — = 2.03x10 Hz. 

o 
Phase = -105.34 degrees 

A statistical measure of the quality of this estimate can be obtained 

by applying Rayleigh statistics as discussed in Chapter XIX, Section C. 

First we assume that the time series is bandlimited Gaussian noise and test 

the hypothesis that the output amplitude spectral density was generated 

exclusively by noise. The expected value of the Rayleigh output is com

puted as: 

EC^(f)} =- (|)^At (NS x^)^ (17F.15) 

"~2 4 
For At = 60, NS = 41, and x = 1.4904 x 10 , the expected value becomes: 

E{X(f)} = 4.1566x10^ = (17F.16) 

The estimated sinewave amplitude is converted to an equivalent amplitude 

spectral density by: 

Xj NS At (17F.17) 
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For DMAG=128.5, the estimated amplitude density becomes: 

15.8055 x10^ 

4 
Since we know that = 3.3165 x10 , the estimated amplitude is at the 4.766 

sigma-level on the Rayleigh distribution. The probability that an a priori 

selected sample at this frequency could be due to random noise is: 

P^ = P(X>4.766 AP =Exp[-^ (4.766)^1= 1.17 X 10"^ (17F.18) 

This is an extremely low probability. The probability that any amplitude 

estimated by a Fourier transform would exceed this value with only noise 

input is given by: 

P^=l-(l-pp^^ = 4.789 x10"'^ (17F.19) 

This is also a low probability. A more detailed discussion of how to in

terpret estimated spectra is given in Chapter XIX, Section C. 

To give the reader a relative idea of the quality of the sinèwave fit, 

the zero-mean data function, "best-fit" sinewave, and "residue" time series 

are plotted together in Figure 17F-1. 
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- 2  -  -

'BEST FIT' SINEWAVE 
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-2 

+ 3 
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Figure 17F-1. Single-sinewave Parameter Estimation 
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G. PROGRAM 07 - Maximum Entropy Spectral Analysis 

1. Introduction 

This program conçûtes the maximum entropy estimate of the power spec

tral density function of a finite time series. A finite autoregressive 

series is used to model the input data function and the power spectrum is 

computed using the autoregressive spectral estimator given by Equation 

15F.1. The estimates of the autoregressive coefficients are obtained from 

the Burg MEM recursion algorithm described in Chapter XV, Section G. 

The program is intended to be used for routine data processing and has 

been user oriented as much as possible. Processing features include user 

selected spectral output display resolution and autoregressive order. A 

selectable printing option has been included so that routine or unwanted 

output can be suppressed. Selectable data preprocessing options include 

removing the average value, linear trend removal, and converting the input 

to standard variables. 

Printed output includes the input data parameters, input time series, 

data function statistics before and after linear regression, time series 

after linear trend removal, standard variables, MEM starting values, inter

mediate coefficients (optional), summary of iterative results, maximum 

filter length, error power, estimated autoregressive coefficients, peak 

value of the estimated spectrum, total spectral power, and the normalized 

power spectral density estimate. 

The folding frequency is computed from the input data and the program 

inhibits the calculation or printing of any aliased output. The spectrum 

is scaled such that the output is the positive frequency half of a double-
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sided spectrtm. Since the spectral power has been normalized to unity, 

the program integrates the spectral density to obtain the total power in 

the estimated spectrum which may then be compared with unity. This provides 

a reasonable check on the quality of the estimate and the numerical stabil

ity of the algorithms. 

SUBROUTINE ATOREG recursively computes estimates of the autoregressive 

coefficients using the Berg algorithm. A detailed description of the rou

tine is given in the flow diagram of Figure 17G-1. The equation numbers 

refer to those equations in the text which are implemented in the sub

routine. 

SUBROUTINE MEMSPM computes the power spectral density estimate using 

the autoregressive coefficients from ATOREG. This algorithm implements 

Equation 15F.1. 

A simple flow diagram describing the essential features of the entire 

program is given in Figures 17G-2a and 17G-2b. 
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SUBROUTINE ATOREG 

The mean-square value is computed 
in the main program. (Equation 
15G.5) 

Compute starting values for Bl and 
B2. (Equation 15G.19) 

Compute the K = 1 values of AK(K) 
and P(K). (Equation 15G.12) 

(Equation 15G.4) 

Iterate 

Increment the order K. 

Compute the autoregressive coeffi
cients AK(T) using recursive equa
tions for increasing values of K up 
to K = MM. (Equations 15G.10, 
15G.11, 15G.15, 15G.16) 

Compute the highest order coeffi
cient AK(K) for a Kth order process. 
(Equation 15G.12) 

Confute the mean-square prediction 
error. (Equation 15G.4) 

K = K+1 

P(K) =P(K- 1)*(1.- AK(K)**2) 

T= 1,N 
P = P+X(T)**2 

PZERO = P/N 

XNOM = XDEN = 0. 

T = 1,N-K 
XNaM = XNOM+ Bl(T)*B2(T) 
XDEN = XDEN + Bl (T)**2 + B2 (T)**2 

AK(K) = 2.*XN(M/XDEN 

K= 1 

Bl(l) =X(1) 
B2(N - 1) =X(N) 

T = 2,N-1 

B1(T) = B2(T - 1) =X(T) 

T = 1,K- 1 
AA(T) =AK(T) 

T= 1,N-K 

B1(T) = B1(T) - AA(K - 1)*B2(I) 
B2(T) = B2(T+1)-AA(K- 1)*B1(T + 1") 

XN0M = XDEN = 0. 

T = 1,N -K 

XNCM = XNOM+ Bl(T)*B2(T) 
XDEN = XDEN + Bl(T)**2 + B2(T)**2 

Al(l) = 2.*XN0M/XDEN 
P(l) =PZER0*(1.-A1(1)*A1(1)) 
PRINT,A1(1).P(1),P(0) 

I 
V 

Figure 17G-1. Burg MEM Recursion Algorithm for Confuting 
Estimates of the Autoregressive Coefficients 
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SUBROUTINE ATOREG (CONT.) 

Compute the estimated autoregres-
sive coefficients for a Kth order 
model of the process. Printing of 

(Equation 15G.3) 
NO 

Iterate 

YES 

Print a summary of the iterative 
results for increasing values of K. 

Print the final order and corres
ponding error power. Print all of 
the autoregressive coefficients 
for a Kth order estimate. 

K = MM 

RETURN 

T = 1,K 

PRINT, T, AK(T), P(T) 

T = 1,K- 1 

AK(T) = AA(T) - AK(K) *AA(K - T) 
PRINT, K, T, AK(K) 

PRINT, K,P(K) 

T = 1,MM 
PRINT, T, AK(T) 

Figure 17G-1. (Continued) 



www.manaraa.com

298 

HEAD INPUT 

PARAMETERS 
•USER' CHECK 
DIMENSIONS 

CCMPCTE 

AVERAGE VALUE 

PRIST 

INPUT PARAMETERS 
READ INPUT 

DATA FUNCTION 

PRINT 
INPUT DATA 
STATISTICS REGRESSION 

PRINT 
INPUT DATA AND 

STANDARD VARIABLES 

X(I) - XNORMd) 

X(I) - XSV(I) 

Id) - XMDCd) Id) - Id) 

. A ,  

T 
CALL 

SUBROUTINE 

ATOREG 
—-

CALL 
SUBROUTINE 

MEMSPM 

'USER' SUPPLIED 
PLOT ROUTINES 

MORE 
DATA 

YES 

STOP 
COMPUTE SPECTRUM 

IN 
RELATIVE dB 

LOOP PROGRAM • 
FOR 

AROMONAL RUN 

Figure 17G-2a. Main Program Flow Diagram. 
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SUGAUUTUUT ATOKEC 

PRINT 
STARTING 

VALUES 

PRIST 
AOTORECRESSIVE 

COEFFICIENTS 

TES NPT2 

NO 

PRINT SUMMARY 
OF 

ITERATIVE RESULTS 

NO PRINT 
AUTOREGRESSIVE 

SUMMARY 
NPT3 

TES 

START 

RETURN 

'USER' CHECK 

DIMENSIONS 

COMPUTE 
AUTOREGRESSIVE 
STARTING VALUES 

COMPUTE 
AUTOREGRESSIVE 

COEFFICIENTS 

SUBROUTINE MEMSPM 

COMPUTE 
MEM SPECTRAL 

COMPWENTS 

PRINT 
KAZS&IM S(I) 

AND FREQUENCY 

PRINT TOTAL POWER 
AND LENGTH OF 

AUTOREGRESSIVE SERIES 

NO NPT4 - 0 

TES 

PRINT SPECTRAL 
ESTIMATE AND 

FREQUENCY 

USER' CHECK 
DIMENSIONS 

OWPUTE TOTAL 
SPECTRAL BOWER 

CUKMFTT. MAXIMUM 
FREQUENCY INDEX 

SELECT THE 
LARCRST SPECTRAL 

"COAPONENT 

Figure 17G-2b. Subroutine Flow Diagrams 
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2. Input data definitions 

FDELT = Output frequency display resolution of the MEM spectral 

estimate in Hz. If the user selects FDELT = 0., the program 

will default to a value equal to four times the Fourier 

resolution. 

LINREG = A user selected data preprocessing option. Spectral esti

mation may be performed using XSV(I), XNORM(I) , XMDC(I) or 

X(I) by choosing LINREG= 3, 2, 1, 0 respectively. 

MM = User selected value for the maximum order of the MEM model. 

This is the maximum number of autoregressive coefficients 

used to characterize the input time series. 

NS = Total number of input data sançles. User must dimension 

program variables accordingly. 

PTOPT = A printing option used to control the printed output of the 

program and used to suppress unwanted output. PTOPT is a 

binary word of the form: (NPTl, NPT2, NPT3, NPT4). NPTl 

controls the printing of the input data function and standard 

variables. NPT2 controls the printing of the summary of 

iterative MEM results. NPT3 controls the printing of the 

autoregressive estimation summary. NPT4 controls the print

ing of the MEM normalized spectral density. 

SNAME = A name or label in FORMAT (5A4) used to identify the data 

record, 

XTDELT = Sampling interval for the input time series, seconds. 

X(I) = Input time series data. Units of volts will be assumed for 

simplified presentation. 
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Input data function statistics 

X = XDC = Average value or estimated mean value of the data function, 

volts. 

~~2 2 
X = PT = Mean-square value of the input data function, volts . 

2 
= PZER03 = Unbiased estimate of the variance of the input data 

2 
function, volts . 

= STDEV3 = Standard deviation, volts. 

Linear regression 

b^ = BZERO = Intercept point from linear regression. 

b^ = BXl = Slope from linear regression 

2 
a = PZER02 = Variance of the data function after removal of the linear 

X 

trend. 

a = STDEV2 = Standard deviation. 
X 

Output data definitions 

Al(l) = Starting value of the autoregressive coefficients for the 

MEM recursion algorithm. 

AK(K) = K-th autoregressive coefficient for an MM-th order process. 

FDELT = Output resolution of the MEM spectral estimate, Hz. 

FR(I) = Frequency points at which the spectral estimate is confuted, 

Hz. 

K = Index for the autoregressive coefficients. 

L = Index for spectral components. 

NMÂX = Maximum spectral index number computed on the basis of 

aliasing. 
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P(0) = Normalized total power for the time series (equal to the 

variance). 

P(l) = Starting value of the mean-square estimation error for the 

MEM recursion algorithm. 

P(K) = Mean-square estimation error for the K-th order autoregres-

sive estimate. 

PT = Total power (or variance) for the data function after linear 

regression. 

S(I) = MEM estimate of the output power spectral density (or second-

moment density) function, watts/Hz. The printout gives the 

positive frequency half of the double-sided density function. 

SBIG = Largest spectral component in the estimated spectrum. 

SPLOT(I) = The relative power spectral density with respect to the 

larges t component. 

XMDC(I) = Input data function with the average value removed. 

XNORM(I)=Data function after linear regression. 

XSV(I) = The input data function converted to standard variables after 

linear trend removal. 

XTIME = Sample times for the input data function, seconds. This 

indexed time is used for plotting routines. 

6. Example 

The time series data in PROGRAM 04 will also be used for this example 

because it provides a demonstration of the resolution differences between 

the DFT and MEM. A 9th order autoregressive estimate was chosen for the 41-

-5 
point time series and the selected output resolution was 2.5x10 Hz. This 
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is approximately four times more resolution than the default value in the 

program. All the printing options were chosen so that the output features 

could be demonstrated. 

Since the raw data exhibits a pronounced average value as well as a 

linear trend, it was decided that the estimated spectrum would be computed 

on XSV(I), the input data function after removing the linear trend and con

verting to standard variables. The input data before and after removing 

the linear trend is shown in Figure 17G-3. The time series after pre

processing is shown in Figure 17G-4. This is the series for which the spec

trum will be estimated. Notice from the data function statistics after 

linear regression that the variance has been reduced to approximately 61% 

of its previous value. 

The MEM starting values are printed so the user may see the total 

power (mean-square value) in the data function and the error power in a 

first order estimate. A summary of iterative results is printed to illus

trate the trends in the reduction of the total error power and the extra

polated coefficient, {AK(K): K= 1, 2, —MM}. The mean-square estimation 

error follows the typical trend of decreasing rapidly with order until some 

minimum level is reached. Figure 17G-5 illustrates this effect. 

The autoregressive estimation summary gives the mean-square estimation 

error for the chosen order (MM =9) of the estimate and the best-fit auto

regressive coefficients. The error power indicates a white noise contribu

tion of only 8.6% to the total spectral power. 
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The maximum entropy power spectral density estimation output prints 

the spectral density in watts/Hz as well as relative amplitudes in dB. The 

numerical integration to obtain total power produces a result very close to 

unity and this indicates good numerical stability. The largest spectral 

-3 
component occurs at a frequency of 1.925 x10 Hz. Plots of the power spec

trum in watts/Hz and in relative dB are shown in Figures 17G-6 and 17G-7. 

These results should be contrasted with the DFT estimate given by 

PROGRAM 04. Comparing Figures 17D-2 and 17G-6 we see the spectral peak is 

much sharper for MEM. Also the fringe frequency estimate given by MEM is 

much closer to the true frequency (1.95 x10 ̂  Hz.) than that given by the 

DFT. A further discussion of MEM resolution and this example is given in 

Chapter XIX. 
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Figure 17G.3. Time Series Data 
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Figure 17G-5. Estimation Error as a Function of 
the Order of the Estimate 
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Figure 17G-6. Power Spectrum, HER A 7/29/75 
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XVIII. MAXIMUM ENTROPY AND FOURIER TRANSFORMS 

A. Introduction 

This chapter is devoted to a summary of the properties, similarities, 

and differences in DFT and MEM spectral estimation. These techniques are 

emphasized because they represent two of the most basic philosophies on spec

tral estimation: periodic extension in the time domain (DFT) and extrapola

tion in the autocorrelation domain (MEM) . Throughout the presentation we 

will keep in mind the fact that spectral analysis is usually employed to 

detect periodicities in a data function and to determine the "strength" and 

"realness" of the estimated component. This presentation is by no means 

exhaustive in its coverage nor does it present the variety of viewpoints 

that are possible. Also, much of the material is redundant in the fact that 

it may be found in various forms elsev^ere in the text. 

B. Fourier Transform Spectrum Summary 

Since the DFT is a discrete implementation of the Fourier transform it 

is helpful to discuss these properties first. A time function {x(t):-«^t^ 

+®} and its amplitude spectral density function {X(jou) :-® ̂  form a 

Fourier transform pair (u)=2Trf): 

The Fourier transform does not exist for all possible types of data func

tions, a good example being white noise. If the Fourier transform is to 

exist, it must be piecewise continuous on every finite interval (Riemann 

(18B.1) 

-H» 

(18B.2) 
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integrability) and it must have a finite average value (necessary). A suf

ficient (but not necessary) condition is that it be absolutely integrable. 

Examples of functions which are most easily analyzed by Fourier trans

form techniques are single pulse waveforms and time functions modified by a 

finite data window. These types of transforms are commonly determined both 

analytically and numerically. 

The Fourier transform has the following useful properties: 

1. The real part of X(juj) is an even function in uu; Re(x( jm) ] = 

Re{X(-jai) }. 

2. The imaginary part of X( juu) is an odd function; Im{X(jai) } = 

-Im[x(-juu) }. 

3. The amplitude spectrum is an even function; |x(juu) | = |x(-jw)|. 

Although not specifically a property, the majority of the functions analyzed 

using the Fourier transform are time limited: x(t) = 0 for Itl^t . This 
' ' max 

produces an amplitude spectrum of infinite extent. The absolute magnitude 

squared, |x(juu) |^, of the amplitude spectral density function is called the 

energy spectrum of x(t). This concept is used to relate time and frequency 

in the definition of Parseval's theorem: 

+® _ +® 

J lx(j(u)rdf = J lx(t)pdt (18B.3) 
—09 -CD 

The energy spectrum of white noise does not exist because the Fourier trans

form is undefined. 



www.manaraa.com

312 

C. DFT Spectrum Summary 

A discrete Fourier transform pair can be obtained from Equations 18B.1 

and 18B.2 by using a Riemann sum approximation for the integrals. For a 

sampled time function, (x(kAt): k=-N,-N + 1, —, 0, ,N-1,N}, containing 

(2N+1) sançles of an infinite time series, the discrete Fourier transform 

(DFT) is defined by: 

-HÎ 

S 
k=-N 

X(jnAuu) = At S x(kAt)e"j*AwkAt (18C.1) 

x(kAt) = -^ S XCjnAude"^^^^"^^^ (ISC. 2) 
n=-N 

There is absolutely no restrictions on the type of function used to obtain 

a DFT. However, if the DFT is used to make an estimate of the amplitude 

spectral density function or energy spectrum of a continuous time function, 

x(t), the quality of the estimate will depend not only on the "true" proper

ties of x(t) but also on the limited ability of x(kAt) to faithfully repre

sent x(t). The commonly used estimates for X(ju)) and x(t) in terms of the 

sample function x(kAt) and its DFT are: 

-rtï 

X(jw) =At Z x(kAt)e'j'^^^ (18C.3) 
k=-N 

x(t) = ̂  Z X(jnA(!))e'^^'^^^ (18C.4) 
+N 
2 

n=-N 

The DFT has the following properties: 

1. The real part of X(jnA(B) is even. 

2. The imaginary part of X(jnAiD) is odd. 

3. The discrete amplitude spectrum, |x(jnAu)|, is even. 
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4. The frequency interval of the estimate is: Auu= 2Tr/(2N+l)At. 

From the sample function x(kAt), the estimated Fourier series is com

puted using (18C.4) and has the following properties: 

1. x(t)=x(kût): t = 0,+At,+2At, ..., ̂ At. 

2. x(t) is periodic with period, = (2N4-1)At. 

The amplitude spectral density computed using (18C.3) has the following 

properties : 

A A 
1. It is periodic with period Ztr/^t, X(j(u+j2Tr/At) =X(jai) . 

2. X(jU)) =X*(-juu). 

3. The estimated amplitude spectrum is even, |x( juu) | = |x(-jw)|, and 

is uniquely evaluated in the range, O^ui^rr/At. 

Parceval's theorem for the DFT is given by: 

• ^ 2  1  .  2  
At S X (kAt) = + ^ |x(jnAUJ) r (18C.5) 

k=-N At 

An interesting property of the DFT concerns the concatenation of zero's 

to the data function. The new data function defined by 

y(kAt) = x(kAt) {k=0,+l,+2, ...,4#] 

(18C.6) 
= 0 Ck = ±(N+l), 

improves the resolution (not "accuracy") of X(jnAcu) by decreasing Atl). This 

artifice produces a more continuous and hence pleasing display of the 

result. For a single time pulse there is no loss of accuracy but for a 

truly periodic function the period becomes distorted and an additional 

estimation error is introduced. 
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D. Wiener-Khinchine Relations 

The concept of a powsr spectral density function (as opposed to the 

ançlitude spectrum) is based on the definition of a time autocorrelation 

function for a wide-sense stationary random process. The autocorrelation 

function and the power spectral density function form a Fourier transform 

pair called the Wiener-Khinchine relations. The advantage of this concept 

is that the autocorrelation and power spectrum are defined for both periodic 

and random components. A disadvantage is that more numerical computation 

is required than for the DFT. The power spectrum of a random process is 

presented in Appendix I, Part F and in various other chapters. 

Applications of the Wiener-Khinchine relations include the Blackman-

Tukey method, the maximum entropy method, and the filtering method of spec

tral analysis. An important model for all of this methods is discussed in 

Chapter V. Most inç)ortant are the time domain convolution integral (Equation 

5A.1), the autocorrelation domain convolution integral (Equation 5B.5), and 

the linear filter power spectrum relationship (Equation 5B.8). 

E. MEM Spectral Theory Summary 

Any process with a bandlimited, finite, and continuous power spectrum 

can be represented by an infinite moving average (Equation 14.1). The fil

tering analogy of a moving average process is the linear transformation of 

white noise. The time series at the output of the filter can be represented 

arbitrarily close by a K-th order (K possibly infinite) autoregressive series 

(Equation 14.21). The nw-ir-îmuTn entropy method maximizes the entropy of the 

spectrum (Equation 15D.1) subject to the constraint that the inverse Fourier 

transform of the bandllmited power spectral density function (Equation 15F.1) 
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for a finite number of sampled autocorrelations be exact (Equation 15D.10). 

This is equivalent to a least-square error fitting of the time series with a 

finite number of autoregressive coefficients. Given enough data, this fit 

can be made arbitrarily close by increasing the order, 

F. MEM and DFT Comparisons 

The biggest contrast between DFT and MEM spectral estimators is that the 

former is an amplitude spectrum and the latter a power spectrum. They also 

differ in the fundamental way they approach the theoretical need for infinite 

data. The DFT assumes a periodic extension of the sampled data function, 

x(kAt), while MEM estimates an extrapolated autocorrelation function based 

on an autoregressive model. Practical applications have shown that extra

polation results in an estimator with superior resolving power. Increases 

by a factor of 4-5 over DFT have been reported in the literature (Dlrych 

et. el., 1973). 

For bandlimited random processes, the power spectrum estimate of MEM 

converges with increasing amounts of data while the DFT estimate does not. 

The spectral amplitudes for the DFT estimate, |x(jnAui) |, are always Rayleigh 

distributed for Gaussian noise no matter what the record length. 

The DFT spectral estimate is periodic, bandlimited, and discrete be

cause of the periodic extension assumption and the Nyquist sampling theorem. 

The MEM spectral estimate is periodic, bandlimited, and continuous because 

of the autoregressive model. Both can be designed to give an estimate that 

is continuous in frequency although practical resolution is usually limited 

by the required confuting effort. 
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The DFT estimate is "optimum" in the sense that x(t) (Equation 18C.4) 

exactly reproduces the original time series, x(kAt), at the points t = kAt. 

The mean-square error of the time domain representation is thus constrained 

to zero: 

E{Cx(kAt) - x(kût)]^} = 0 (18F.1) 

Because the estimator was also constrained in frequency (bandlimited) it 

also provides the "smoothest" extrapolation between data points, x(kût), 

consistent with the restriction that x(t) be periodic. The accuracy with 

A 
which the spectral estimate, X(jnûiu), agrees with the "true" spectrum, 

X(juj) =^[x(t)], depends upon how well x(t) is modeled by a bandlimited 

periodic function. 

The MEM estimate is "optimum" in the sense that the spectral entropy 

(Equation 15D.1) is minimized \diile constraining the estimated autocorrela

tion function to be the exact inverse Fourier transform of the power spec

tral density. The mean-square error in the time domain is minimized by 

choosing autoregressive coefficients which minimize (Equation 13.36): 

E C[x(kAt)- x(kAt)]^} = CTç (18F.2) 

An interesting parallel between the DFT and MEM can be developed using 

ideas presented in Chapter XIII. Equation 13.9 represented the Fourier 

series in a form similar to autoregression. The autoregressive approach 

starts with the best linear one-step predictor in a least-squares sense: 

A ^ 
x(k+l)= S ax(k+l-n) (18F.3) 

n=l ° 
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Using a complex representation for a sinusoid of frequency, f, we have: 

+j2TrfkAt 
x(k)=Ae (18F.4) 

If, ideally, the prediction error is to be zero, x(k+1) - x(k+1) = 0, than 

substituting Equation 18F.4 into 18F.3 gives the condition for the conçlex 

coefficients as: 

A,+j2nf(k+l)at _ % ^ ̂+32rt(k+l.n)it 

n=l * 

This can also be written as: 

1= S a e-j^TTfuAt (18F.6) 

n=l ^ 

The solution for a^ from (18F.5) is given as: 

= K (18F.7) 

These are the complex coefficients needed to perfectly predict (or filter) 

the single-frequency sinusoid. 

For more than one sinusoid the solution is much more involved. Consider 

the representation 

M +jX k 
x(k) = 2 A e P (18F.8) 

p=l P 

\diere \ = Zrrf At. The condition for the complex coefficients now becomes: 
P P 

M +jX (k+1) K M +jX (k+l-n) 
S A e  P  = Z a  Z A e  P  ( 1 8 F . 9 )  
p=l P n=l ^ p=l P 

The solution for a^ is given by 
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- M +jX (k+1) M +jX (k+l-n) 
a = — C 2 A e ^ ][ Z A e ^ ] (18F. 10) 

K p=l P p=l P 

which reduces to (18F.7) for M=l. Notice the k dependence of when more 

one frequency is involved. This means that a^ depends on time which is not 

allowed for autoregressive coefficients. In conclusion, MEM cannot repre

sent the Fourier series given by (18F.8). These representations may be con

trasted with the Fourier series representation of Equations 11.9 and 11.10 

to determine further comparisons. 
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XIX. INTERPRETATION OF ESTIMATED SPECTRA 

A. Introduction 

A study of the properties of the various spectral estimators is only 

part of the task necessary for the practical application of spectral theory 

in research. Even after careful selection and implementation of a good es

timator one is faced with the task of interpretation of the computed results. 

In this chapter we will concentrate on the DFT (FFT) and MEM techniques. 

The important properties that affect the interpretation of the results of 

these estimates are presented along with practical exan^les. Two of the 

most important concepts presented are the detection criterion for a sine-

wave in Gaussian noise using the FFT and the effects of data length and 

autoregressive order on the estimated frequency for MEM. The summaries on 

resolution limits and common estimation errors should be especially helpful 

for designing the data taking and processing methods. 

B. Data Function Models 

It is helpful in the interpretation of estimated spectra to keep in 

mind a suitable model for the process. Three possible models were suggested 

in Chapter XIII that seem to be able to describe most empirical data func

tions. These models are: 

1. Fourier series plus bandlimited Gaussian noise. 

« ""J V ' 
y(t) = |(t)+ Z ce (19B.1) 

n=-M 

2. Autoregressive series of order K. 
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K 
y(k) = §(k) + E ax(k-n) (19B.2) 

n=l ^ 

3. Convolution of a known function and bandlimited white Gaussian noise. 

y(k) = z(k) * Ti(k) (19B.3) 

Strictly speaking, the amplitude spectral density does not exist for 

these models because they dc not have Fourier transforms. As a practical 

matter however only a limited time record is ever observed and thus the 

actual empirical data model is the product of y(t) and a suitable time do

main window: 

x(t) = y(t) • w(t) (19B.4) 

w(t)?tO |t|zt^ (19B.5) 

= 0 otherwise 

The Fourier transform of x(t) exists for all of the suggested models. The 

effect of the window function and random noise on the estimated anq)litude 

spectrum are a topic of discussion in this chapter. 

The power spectral density function exists for all the models of y(t) 

because they all have well-defined autocorrelation functions. The "unwin-

dowed" power spectrum is usually referred to as the "true" spectrum and 

the quality of the estimate is judged against the "true". This is not a 

really fair comparison in many cases because of the degrading effects of 

data windowing. Whenever possible, an estimate should be compared to the 

spectrum of the "windowed" function. 
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For purposes of reference, the power spectral density functions of 

the models will now be given. For all cases, the spectral models will be 

obtained from the following: 

ECy(t) y (T- t)} = Ry(T) 

?(Ry(T)}=Sy(f) 

9^[E{:(t) § (T-t)}}=Sp(f) 

(19B.6) 

(19B.7) 

(19B.8) 

The spectra of the models are; 

1. Fourier series plus bandlimited Gaussian noise. 

4M -
S (f)=S_(f)+ Z \c r - f) 
^ ^ n=-M F 

(19B.9) 

2. Autoregressive series of order K. 

Sy(f) = 
Sg(f) 

1 - 2 a e 
I a=l * 

-j2-nfn^lt 

(19B.10) 

S_(f)= CT- At 

= 0 otherwise 

(19B.11) 

^ " 2At 

3. Convolution of a known function and bandlimited white Gaussian 

noise. 

Sy(f)=S^(f)S^(f) (19B.12) 
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S^(f) =H(juj)H*(j(u) (convolution filter) (19B.13) 

Sg(f)= CTç At 

= 0 otherwise 

(19B.14) 

^ ° IS 

There are many pathological functions which do not fit these models 

and whose spectra are not well-estimated but for the majority of noisy 

data, these models are adequate. Also, there seems to be a reluctance on 

the part of some theorists to accept the noise model restrictions of finite 

bandwidth and Gaussian distribution on the noise model. Bandlimiting is 

not a problem either conceptually or practically as all measurement tech

niques cause bandlimiting. The Gaussian assumption is harder to justify 

conceptually but for practical applications the Central Limit Theorem 

usually applies because of all the linear operations associated with signal 

processing. In most communication and signal processing systems the narrow

band filtering (linear filtering) generates Gaussian noise. 

The DFT is still commonly used for analyzing noisy or almost random 

data in spite of the fact that nearly every book on signal processing cau

tions that the DFT estimate for random noise does not converge. This mis

use is probably a result of the following circumstances : 

1. The FFT is readily available and the Fourier transform method of 

C. DFT and Gaussian Noise 

estimating an amplitude spectrum is widely understood. 
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2. The autocorrelation method of estimating a power spectrum is more 

difficult and the Blackman-Tukey approach is not as widely under

stood. 

3. The data window effect (Equation 19B.4) allows the existence of a 

DFT for x(t). It also allows for a statistical interpretation of 

the estimate and for spectral smoothing techniques. 

The application of the DFT to a limited time record of bandlimited Gaussian 

I 
noise will now be presented. ' 

The complex Fourier amplitudes for a random signal defined by [|(k): 

k = 0,+l,+2, are given by the complex series: 

^=2iî^ ̂  5(k)e ^ 2N+1 (19C.1) 

The s angling interval in time is At and is represented at times, t = kAt, 

by the index k. An alternate representation for (19C.1) is given by 

where 

N 
& =5(0)+ r C§(k) + c(-k) 1 cos (T-^ nk) ( 19C. 3) 

k=l 

* N 
P = S [§(k) - §(-k) ] sin (T^j^Y nk) (19C.4) 
n 

c =c (19C.5) 
n —n 
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A A 
or^ and are both Gaussian because the operations described by (19C.3) and 

(19C.4) are just scaling and linear combinations of the Gaussian random 

variables, §(k). Even when §(k) is not Gaussian the central limit theorem 

A A 
applies and the linear combinations of many sangles makes ar^^and tend 

to be Gaussian. 

The discrete amplitude spectrum is estimated by scaling the absolute 

value of the complex Fourier amplitudes (Af = 1/(2N+1) At) : 

Ix(nAf) I = (2N+ l)Atlc^l (19C.6) 

A A 
In terms of the a and g , the estimated amplitude spectrum is: 

n n 

|x(nAf) I = AC(af + (19C.7) 

A 

From statistical communication theory (Whalen, 1971) we know that X(nAf) 

represents an envelope function and hence is Rayleigh distributed. Since 

the Raylelgh characteristic does not depend upon the number of samples used 

in the estimate, the ançlitudes remain Rayleigh distributed no matter how 

much data Is used. For this reason the amplitude spectral estimate is said 

to be nonconvergent. 

Figures 19C-1 and 19C-2 show the estimated amplitude spectra for sanq)le 

records of a bandllmited white Gaussian noise process. The "parent" Gaussian 

process has the following properties: 

1. Mean: E[§(k)} = 0. 

2. Mean-Square: E{§^(k)}= 1. 

3. Variance: E{(§(k) - EU(k) })^}= 1. 

4. Power Spectrum: S^(f) = l/At, |f | ̂ 
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The first sang)le data record with M =32 points has the following properties: 

1. Mean: <|(k)>"= 3.25 x 10 ^ 

,A2 V 
2. Mean-Square: <| (k)x= 1.39 

3. Variance: <(§(k) - <|(k)>)^>= 1.43 

The nonnegative half of the estimated amplitude spectrum shown in Figure 

19Ci'l has the following properties [n=0, 1,2, ..., (j - 1)}: 

1. Spectrum: Rayleigh distributed 

2. Mean: <(|x(n6f) 1^= 5.94 

3. Mean-Square: <(|x(nAf) 1^^= 43.8 

4. Variance: <( |x(nAf) | -<]x(nAf) 9-06 

The second sangle record with M=256 points has the following properties: 

1. Mean: <t(k)>= -1.52 x lO"^ 

2. Mean-Square: <!§^(k)>"= 0.979 

3. Variance: <(|(k) - <|(k)>)^>= 0.982 

The nonnegative half of the estimated amplitude spectrum shown in Figure 

19C-2 has the following properties [n = 0;l, 2, - 1)}: 

1. Spectrum: Rayleigh distributed 

2. Mean: <|X(n6f) |>= 13.8 

3. Mean-Square: *\|x(nAf) 1^^= 250. 

4. Variance: <( |x(n6f) | -<|x(n6f) |>)^>= 61.4 

Parceval's theorem for the DFT as given in (18C.5) can be rewritten in 

terms of the present quantities to be: 

AtM<p(k)> =- 6f[M<|x(nAf) |^>- |x(0) |^] (19C.8) 

For At = l and ^f = 1/MAt the estimates above (for M =256) give 
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AMPLITUOE SPECTRAL OENSITT FUNCTION 
O 
Q' 

l a -

•u 

C 

0 

nAf, Frequency 

Figure 19C-1. Estimated Amplitude Spectral 
Density for Gaussian Noise (M = 32) 
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AtM<§^(k)> =• 251. 

and: 

i2x. i*,„vi2. 
Af[M<|X(n6f) r>- |X(0) I ] ̂ 250. 

This is in excellent agreement. We also know from theory that, for a truly 

Rayleigh distribution, the mean and mean-square values should be related as: 

E{ |x(nAf) 1^}= ̂  E^C Ix(nAf) | } (19C.9) 

For estimates, the approximation is: 

<lx(nAf) i^> <|x(n6f) |>^ (19C.10) 

For the estimate shown in Figure 19C-2 the ratio of right to left-hand-side 

of (19C.10) is 0.970 which is a three-percent difference. 

Combining Equations 19C.10 and 19C.8 gives an important result that 

relates the average value of the output amplitude spectrum to the input 

data. The theoretical result is 

E{|x(nAf) I}= (|)^C(At)^ME{§^(k)} + (19C.11) 

while for estimates the approximation is: 

<lx(nAf)|> - (7)^C(At)^M<|^(k)> + J2^lL]% 
"• (19C.12) 

{n = 0, 1, 2, ..., (| - 1)} 

The reader should again be reminded that all the equations are written in 

terms of only the nonnegative part of the double-sided amplitude spectrum. 
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AMPLITUDE SPECTRAL DENSITY FUNCTION 

o 
o 

R 
>> 
u 

nAf, Frequency 

Figure 19C-2. Estimated Amplitude Spectral 
Density for Gaussian Noise (M =256) 
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Using the notation 

CT^ = I C(ût)^M<|^(k)> + I ] (19C.13) 

it is possible to express the characteristics of the Rayleigh distribution 

compactly as: 

1. Mean: <lx(nAf) 1> (19C.14) 

2. Mean-Square: <|x(n6f) |^> =- 2a^ (19C.15) 

3. Variance: <( |x(nAf) | -<|x(nAf) |>)^> - (2 - ' (19C.16) 

2 
For the example with M = 256, Equation 19C.13 gives (a^ = 125.3) . 

In this section we have shown that the amplitude spectrum estimates 

are Rayleigh distributed both in an ensemble sense and across frequency. 

The statistical properties of a DFT estimate of the amplitude spectrum 

of Gaussian noise can be used to develop a simple test for the detection 

of a periodic conponent in the spectrum both over frequency and in an 

ensemble sense. 

First, at an a priori selected frequency aAf, the amplitude estimates 

are Rayleigh distributed over an ensemble of spectral estimates. The 

probability that a single estimate, from one ensemble function will 

exceed a selected threshold X^ is given by: 

= P( Ix^ I ^X J = expC-X^/2a^] (19C.17) 
O SL O O O 

This is analogous to the well-known "false alarm" probability for statisti

cal detection (Whalen, 1971, Ch. 8) when using a Rayleigh envelope function 

(Whalen, 1971, Ch. 4). The detection criterion for testing an ensemble of 

spectral estimates for a periodic con^nent at a^f is developed by selecting 
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A 
a confidence limit using (19C.17) and (19C.13) and testing all X^'s against 

the computed threshold X^. 

Second, for a single sample record of the estimated amplitude spectrum 

the amplitude estimates are Rayleigh distributed over frequency. The 

probability that any single estimate, |x(nAf)|, will not exceed a selected 

threshold X^ is given by: 

P( Ix(nAf) 1 = (1 - P^) (19C.18) 

This is simply one minus the false alarm probability. Using the theorem 

of joint probability and the multiplication theorem (Beckmann, 1967, p. 19) 

leads to the probability that any of the M/2 independent amplitude estimates 

will not exceed a threshold X_: 
o 

A A A M/2 
P(X^, Xg = (1 - P^)"' (19C.19) 

Likewise the probability that one or more amplitudes in a single spectral 

estimate will exceed X^ is given by: 

P^ = l-(1-P^)"^^ (19C.20) 

Equation 19C.20 can be used to test the largest spectral component to 

see how likely it would be to achieve that given level. If maxCx(nAf) } ex

ceeds some chosen confidence threshold X^, we can use this test to determine 

the likelihood of a periodic component. As an example, for the record 

M =256, the largest asq>litude is: 

maxC |x(nAf) |} = |x(10Af) | = 37.4 (19C.21) 
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2 
Computing using (19C.13), the test probability using (19C.17) is: 

= exp[-(37.4)2/2(125.3)] = 3.77 xlO"3 (19C.22) 

The probability that at least one of the amplitudes would be as large as 

A 

X(106f) is: 

A 128 
P = l-(l-P^)'-^° = 0.38 (190.23) 

This is a very likely occurrence so we can assume that the spectrum repre

sented by Figure 19C-2 is due exclusively to random noise. 

The threshold for a confidence limit of 0.01 is obtained by solving 

Equations"T!9cT20^nd 19C.17 for X^. The solution is as follows: 

P = 0.01 = l- (1-P^)^^® 

P =7.85x10'^ 
o 

cf = 125.3 
o 

X =48.7 
o 

If any of the estimated amplitudes had exceeded this level it would have 

been strong evidence for a periodic con^>onent in the data. This technique 

is recommended as a method of detecting a periodic component in noisy data 

by using the DFT. 

A second example will now be given that includes both sinewave detec

tion and the effect of increasing the total number of phase coherent samples 

(as discussed in the next section). A test signal of the form 

y(kAt) = §(kAt) +A sin (2TTfkAt + 0.77) (190.24) 
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was generated using; Gaussian noise with zero mean and unity variance, 

A = 0.707, and f = 0.249. PROGRAM 05 was used to obtain ançlitude spectrum 

estimates for data records of various lengths. The results and conclusions 

will now be discussed. 

Table 19C-1 is a sumnary of results fiar various data samples. The 

Rayleigh mean and standard deviation are shown along with the confidence 

thresholds computed for the 0.05, 0.01, and 0.001 confidence limits. The 

largest amplitude, its frequency, and probability of occurrence are also 

shown. Figure 19C-3 shows plots of the amplitude spectral density function 

for the various phase-coherent sample lengths. The effect of the sinewave 

component "growing" out of the noise is very evident. 

The sinewave cm^onent is easily detected for M = 256 as shown in 

Figure 19C-3(d). The probability of occurrence of a component this large 

from noise alone is only 1.5x10 This corresponds to a DFT spectral 

signal-to-noise ratio (Chapter XIX, Section E) of 31.9 or +15.0 dB (Equa

tion 19E.4).. These numbers agree quite well with envelope detection theory 

(Whalen, 1971, Chapter 8). From this we conclude that enough sangles should 

be taken so that SNR^^ (Equation 19E.4) is greater than 12 - 15 dB. 

This last example was intended to illustrate the effect of increased 

fiampl-ing on the detection of a sinewave component in noise and to indicate 

the number of samples necessary for a good probability of detection. 
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Table 19C-1. Summary of Results for the Example of the Detection of a Slnewave In Gaussian Noise. 

X n^f 

NS-M <|x|> 

A 

P 
@0.95 @0.99 @0.999 max(x(n6f] Hertz for X 

max 

32 

64 

128 

256 

512 

1024 

5.32 

7.62 

10.9 

14.1 

21 .1  

2 8 . 6  

4.24 

6.08 

8.72 

11.26 

16.80 

22.80 

14.4 

21.8 

32.9 

44.5 

69.3 

16.3 

24.4 

36.5 

48.9 

75.7 

97.8 106.1 

54.6 

83.8 

116.9 

9.5 

16.3 

30.6 

63.6 

115.8 

322.7 

0.375 
+ .031 

0.109 
+ .015 

0.250 
+.0078 

0.250 
+.0039 

0.250 
+.0019 

0,249 
+.0009 

0.74 

0.59 

0.127 

1.5 X 10 
-5 

1.23 XlO"® 

1.6 X10"41 
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Figure 19C-3. Example Results for the Detection of a Sinewave in Gaussian Noise 

as the Number of Coherent Samples is Increased 
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D. DFT and Spectral Averaging 

In Chapter XII the san^ling and estimation problem was discussed and 

some groundwork was done on spectral averaging for noisy periodic signals. 

In Section C of the present chapter, the DFT ançlitude spectrum estimate 

was characterized for a bandlimited Gaussian noise sample. In this section 

we will look at simple methods of spectral averaging and how they affect 

the estimate of the amplitude spectral density function. 

• For a Gaussian noise input, the amplitude estimate given by Equation 

19C.7 has an average value given by Equation 19C.14. For large samples 

the mean converges to: 

EC |2(nAf) I ]  = At(|M EC(k) })^ ( 19D. 1) 

The mean value depends on the sampling interval, the total number of samples, 

and the variance of the input noise. 

Now consider a finite data function [x(kût) : k = 0,+l,+2, j#} 

represented by Equation 19B.1 and a rectangular data window function of 

width, Tjj = (2N+1)At: 

^ +j|fkAt 

x(kût) = §(kût) + See ^ (19D.2) 
_ _ in 

nm-M 

The amplitude spectral density is estimated using the sum of the DFT of 

§(kAt) and the spectral mixing formula (Equation 11.19): 

•w -1 Mn 
X(nAf) = At r §(kAt)e 

k=-N 

+M 

+ T^ Z c - nAf) (19D.3) 
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A 
If we represent the second term of (19D.3) by the estimate, A(n&f), of the 

"true" spectrum and the first term by Equations 19C.3 and 19C.4 the result 

is: 

X(n6f) = At(Œ -j&)+A(nAf) (19D.4) 
n n 

A 

Since the estimate A is conçlex it can be represented as 

A "j®n 
A(n6f) = A^e ^ (19D.5) 

and the estimated amplitude spectrum can be expressed in complex form as: 

X(nAf) = [AtSf + A cos 0 ]-j[At0 +A sin 0 ] (19D.6) 
n n n n n n 

The terms and 6^ are really the noiseless estimates of |x(nAf)| and 

argîX(nAf)} discussed in Chapter XII. These estimates are corrupted only 

by the spectral mixing effect. The terms and are Gaussian random 

variables which represent the effects of noise. To adequately represent 

the effects of record averaging, the terms in Equation 19D.6 need a sub

script denoting the record number. If the record number is denoted by the 

subscript m then the following double subscript notation is needed: 

XJnAf) = iLt A^cos 0^1- jCAt A^sin S^] (19D.7) 

The vector or coherent average for R records is expressed as: 

A 1 ^ A 1 R 
Ave{x^(nAf)} = - Z ̂  ̂ Z A^ cos 0^] • 

m=l nml 

10=1 m=l 
(19D.8) 
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For large numbers of records the noise averages out and the result may be 

written in abbreviated notation as: 

AveCx(nAf) } = AvefA cos 0 }-j Ave [A sin 8 } (19D.9) 
n n n n 

The algebraic or incoherent average is obtained by averaging the mag-

A 
nitude and phase separately. The magnitude and phase of X(nAf) are: 

[x(nûf) 1 = CA^ + (At)^(a^ + 0^) + 2At A (or cos 0 + g sin 9 ) ]^ 
n  n n  n n n n n  

(19D.10) 

A -(At P + A sin 0 ) 
Arg{X(nAf)} = Arctan[ —] (19D.11) 

(At a + A cos 0 ) 
n n n 

Since only the average magnitude is desired for an amplitude spectral den

sity estimate the two types of averages give the final results: 

1. Vector or coherent average. 

Ave{lx(nAf) | }= [Ave (A^ cos 8^]^ + Ave{A^ sin 8^^^]^ (19D.12) 

2. Algebraic or incoherent average. 

Ave[|x(nAf) !}= CAve{A^}+(At)^ Avefo^+e^}]^ (19D.13) 

The quality of the estimate of the anq>litude spectrum is affected both 

by the observation period T^ (or the total number of samples for fixed At) 

and by the number of records averaged. Equations 19D.12 and 19D.13 are the 

final results assuming that enough records have been averaged that the 

variability of the estimated average can be neglected. 

According to the spectral mixing theory of Chapter XI, as the observa-

A 
tion period increases, the estimate A converges to the "true" amplitude: 
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-jS 

A^e ^ X(nAf) = (190,14) 

and the coherent average gives: 

Ave{ |x(nAf)|} =- |x(nûf) | (19D.15) 

If the records are not phase connected, the phase angles 9^ become random 

functions of the record number with a uniform distribution (-Tr,+rr) and the 

coherent average becomes zero. Normally the phase connection will be ap

proximately correct and 9^ will have a Gaussian distribution around the 

mean angle. If phase connecting cannot be guaranteed the coherent average 

should not be used. The coherent average is a fickle performer as an es

timator and must be used with caution. 

To assess the performance of the incoherent average we need to express 

it in an alternate form by using Equations 19C.7 and 19C.14 to give: 

Ave{Qf^+ ^ (19D.16) 
° " (AC) 

This is used in 19D.13 to obtain the alternate representation: 

Ave{ |&(nAf) | } = [Ave[A^}+ (190.17) 

2 2 2 
From (19D.3) we see that A^ increases as T^ \rfiile from (19C.13) increases 

only as T^ (M = T^/At). Since A^ is always positive, the estimate for large 

Tjj converges to: 

Ave{ Ix(nAf) j } =" Ave{A^} (19D. 18) 

For Ave{A^} = 0, the estimate of (19D.17) converges to that of (19C.14). 
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The amplitudes are statistically variable because the samples are 

not phase connected and because of spectral mixing effects. Because the 

phase reference for several arbitrary records is random and approximately 

uniformly distributed, will have a Gaussian distribution about some 

average value that has a fixed bias from the true value, |x(nAf)|. 

E. DFT Signal-To-Noise Ratio Concepts 

The concept of a spectral signal-to-noise ratio seems like a natural 

extension of the presentation in Section D and may contribute to a better 

understanding of the spectral averaging concept. If we define a signal-to 

noise ratio for a Fourier frequency n^f as 

2|cJ^ 
SNR = : (19E.1) 

5 (k)> 

and use the relations, 

°o *"2 At (19E.2) 

knl = ^ |x(nAf) I (19E.3) 

the SNR at n^f becomes (M = T^/At) : 

SNR^ = I (19E.4) 

^o 

The average value of the estimated amplitude A^ can be represented as a 

correction factor times the "true" asq>litude: 

Ave {a } = Y |x(nAf) | ( 19E. 5) 
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If we identify the total number of samples as M = T^/At then Equation 

19D.17 may be written as: 

/ 

Ave{|x(nAf) | } = SNR^]^ (19E.6) 

This equation expresses the average amplitude spectral density as a func

tion of the signal-to-noise power ratio for a spectral component repre

sented by the complex Fourier coefficient, c^. 

For a sufficiently long sample of a model consisting of Gaussian noise 

with a single periodic component represented by c^, the spectral mixing 

correction factor, is unity for n = m and zero for all other n. This 

leads to the approximations: 

AveC|x(nAf) |} =- n#m (19E.7) 

AveClx(inAf)l} =- (Y)^a^[l+(^ SNR^I^ (19E.8) 

For a single sinewave we will briefly introduce another concept with the 

help fo Equation 19E.8. Applying Parceval's theorem (Equation 18C.5) we 

get 

-rtî , 1 A 2 
At S x (k)=7ô~ïx77 Z Ave{lx(nAf)l} (19E.9) 
k=-N lz« + i;At 

or after many manipulations: 

M(At)^ <x^(k)> = Y + ̂  SNR^l (19E.10) 

The presence of a sinewave increases the mean-square value of x(k) as in

dicated by Equation 19E.10. If the removal of a spectral component mAf • 

decreases <x^(k)/" by an amount that is statistically more significant than 
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the removal of a random component, then (19E.10) could be the basis of a 

criterion for detecting a single sinewave component in noisy data. 

The author plans to publish additional work with these topics in a 

future paper. 

F. MEM in the Z-Transform Domain 

In Chapter XV it was shown that the maximum entropy spectral estimator 

could be represented by (Equations 15D.38 and 15D.39): 

S^(f) ^ = 7-^.0 (19F.1) 
Q(Z)Q (Z) |Q(Z) 

where: 

Z = e+j2nfAT |f| 3 " (19F.2) 

Q(Z) = 1- S a_(k)Z (19F.3) 
k=l K 

Remember that is the sampling interval in the autocorrelation domain, 

that a^(k) represents the coefficients for a K-th order autoregressive 

model of the time series, and that is the minimum mean-square error of 

the one-step prediction. The properties of the spectral estimator can be 

related to the properties of the complex polynomial Q(Z) and the associated 

coefficients, a^(k). 

The orders of the polynomial and the process are always the same. Q(Z) 

also represents the z-transform of the "best" least-squares linear predic

tion filter for the process. For this reason |Q(Z)|^ will be called the 

absolute value squù'ed of the filter transfer function or singly the power 

transfer function. We will use the abbreviated notation 
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G(f) = 1Q(Z) 1^ = |2 (19F.4) 

to indicate that Z is evaluated on the unit circle so that G(f) is real. 

The notation is not precise but generally there is no confusion as to 

meaning. Another notation option will be the substitution of ^1"= l/Zf^ 

into some of the equations so that the effect of the Nyquist frequency 

limit can be displayed directly: 

As a simple example we will look at a first order process with associ

ated polynomial and power transfer function: 

Z = e (19F.5) 

Q(Z) = L-A^(L)Z"^ (19F.6) 

\ 

jQ(Z) |2=[1- a^(l)z'^][l - ai(l)Z+l] 

= -a^z'^+ [1+ a^(l) ] - a^Z+1 (19F.7) 

The zero of Q(Z) occurs at Z^ = a^(l) and those of |Q (Z) at Z^ 

l/a^(l). Figure 19F-1 shows the estimated power spectral density for dif

ferent values of a^(l). 

Now consider a second order process: 

Q(Z) = l-a2(l)z"l-a2(2)Z-2 (19F.9) 

Iq(Z) |^ = -a2(2)Z-2 - a^Cl) [l - ]Z'̂  

+ [l + a2(l) +32(2) l-a^CDCl-3^(2) ]Z^-a2(2)Z^ (19F.10) 
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S_(f) 

-C) 

a.(1) =0.5 

< > —  

< > -

+ .5 .5 f 0 + 

Figure 19F-1. First-Order Spectra 

G(f) = Cl + a^(l) + a^(2)]-23^(2) cos (2TTf/y 

- 232(1) [1 - 3^(2) ] cos (TTf/^) (19F.11) 

The zeros of Q(Z) now occur at: 

^1 2 ~ 2 *2^^) ± "2 I^a^Cl)+432(2) (19F.12) 

An excellent example for a second order autoregressive time series is given 

by Fuller (1976, p. 55): 

x(t) - x(t - 1) + 0.89 X (t - 2) = |(t) (19F.13) 

3^(1) = 1 3^(2) 

The zeros of Q(Z) now occur at: 

= -0.89 (19F.14) 
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2 = 0.500 + j 0.800 

= 0.943 (19F.15) 

A plot of the locations of both zeros is shown in Figure 19F-2. The auto

correlation function for this process has the appearance of an exponentially 

damped sinusoid. The power transfer function is: 

G(f) =2.79+ 1.78 cos (2?Tf/f^) - 3.78 cos (nf/f^) (19F.16) 

Z-Plane 

1.01 
+1 

-1 

Figure 19F-2. Zeros of Q (Z) = 1 - z"^ + 0.89 z'^ 
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200 --

100 __ 

40.5 

Figure 19F*3. Typical Spectral Peak for MEM 

A plot of ^ S (f) = ^ shown in Figure 19F-3. A multitude of the 

properties of MEM spectral estimators can now be summarized using the second 

order process as a typical exanq>le. These properties are: 

1. Q(Z) gives a complete description of the spectral estimate and the 

location of its zeros carry important information about the spec

tral shape. 
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2. Q(Z) is defined so that all of its zeros lie inside the unit 

circle. 

3. For second and higher orders, the zeros of Q(Z) may be complex. 
I 

Zeros lying close to the unit circle are capable of representing 

nearly periodic structure and thus allow MEM to estimate both 

noise and quasi-periodic components. Zeros off the real axis al

ways come in complex conjugate pairs. 

4. For each quasi-periodic component, two orders are needed for Q(Z) 

because the zeros must come in complex conjugate pairs. Thus to 

describe five quasi-periodic components the polynomial must be of 

at least order ten. 

5. The Burg recursion restricts the K-th autoregressive component to 

the range: 0 < a^(K) < 1 thereby assuring a positive definite co-

variance matrix and the absence of zeros lying exactly on the unit 

circle. 

6. The frequency of a zero that is sufficiently isolated from other 

zeros can be obtained approximately by: 

f ImCz } 
(19F.17) 

For the Fuller exan^le, f^ =" 0.322 f^. 

7. Some estimates can give a very sharp peak as illustrated by Figure 

19F-3. When designing a numerical algorithm for the estimator one 

must guarantee that no spectral peaks are missing. A quality 

check can be perforAed by integrating S^(f) to see if it gives the 

total power. 
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When the approximate peak locations are known an expanded resolution as 

illustrated by Figure 19F-4 may be economical. 

Another approach to determining the location of spectral peaks is to 

determine the zeros of Q(Z) directly from a polynomial solving routine: 

This works especially well if the zeros are well separated and the order is 

within reasonable limits. This approach also has the advantage that the 

stability of the zero locations and their separation from the unit circle 

can be more directly observed as K is increased. An example of this ap

proach will be given in Section H of this chapter. 

Q(Z) = (Z - Z^) (Z - Zg) (Z - Z3) ... (Z - Zg)/Z^ (19F.18) 

200 

100 

Figure 19F-4. Expanded Resolution of Spectral Peak 
Showing the General Shape to be Expected 
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G. MEM Resolution and Stability 

This section is essentially an extension of the last section with an 

emphasis on the resolution and stability properties of the MEM spectral 

estimate. The estimator given by Equations 15F.1 or 19F.1 is shown to be 

continuous, however, for a practical computer implementation, it is dis

crete. The practical display resolution, Af, is limited by the amount of 

conçutational effort one is willing to invest into Equation 15F.1. A dis

crete estimator will be represented by 

A 
S^(nAf) = 

1 -  I  
k=l *-

(19G.1) 

where: 

{n = 0,il,+2, (190.2) 

The analogy between MEM and digital filtering will be fully exploited 

in this section. To begin we redefine the complex polynomial to agree with 

= ofe- - DM 

where: 

D(Z) = d^(0) + d^(l)Z + d^(2)Z^+ ... + d^(K)Z^ (19G.4) 

D(Z) = (Z-Z^)(Z-Z2)(Z-Z^) ... (Z-Z^) (19G.5) 

Z = e+jZTTfAT (19G.6) 

The coefficients of D(Z) can be identified with those of Q(Z) by the 

following: 
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dg(K) = 1 dg(K - k) = -a^(k) (19G. 7) 

The conçlex transfer function H(Z) represents the moving-average filter 

model. The zeros of Q(Z) are also the zeros of D(Z). The K-th order zero 

of H(Z) at zero represents a phase angle of Ktrf/^ at f but has no effect 

on the spectnm. The MEM power spectrum can also be determined by: 

S^(f) = H(Z)H*(Z) (19G.8) 

Z = e+j2TTfAT 

It is common practice to represent each factor of Equation 19G.5 as an am

plitude and phase 

+j 0 
(Z-Z^) = r^e ^ (19G.9) 

so that (19G.5) can be expressed in an alternate form as: 

+j(0 + G + ... + 0 ) 
D(Z)= r^r^r^ ' " (19G.10) 

The magnitudes, r^, represent the magnitudes of a vector from the zero 

location to a location on the unit circle and 0^ is the angle this vector 

makes with the abscissa. The filter transfer function can now be written as: 

+j(KTTf/fjj-0^-02 ... -0^) 

H ( Z ) = - — —  ( 1 9 G . 1 1 )  
12 3 K 

The spectral estimate becomes: 

* 
s^(f) — 2 (19G.12) 
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The concept of a complex frequency location to describe the zeros of D(Z) 

will now be given. Its use will become apparent later. A conçlex frequency 

Q is defined as 
n 

(19G.13) 

and is used to describe the location of a zero of D(Z) in complex notation: 

(I90.U, 

The factors in (19G.9) are expressed in terms of a complex frequency as: 

(Z-Z^)=(Z-e " ) (19G.16) 

On the unit circle we get 

or alternately: 

The absolute magnitude of (19G.18) is; 

-2TTQr / f„ -va /f^ , 
Iz -  Z^l = r^= {l + e -2e cos (TrO^ -  f)/f^) } cos (TT(e^-f)/^)P (19G.19) 

The spectral shape of Equation 19G.12 is dominated by the function 

|z-z 1^ near an isolated zero, Z , that is close to the unit circle. The 

2 
function r^ is conceptually very important because it represents the generic 

shape factor of the MEM spectral estimator near all isolated zeros of D(Z) 
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2 
when the zero is near the unit circle (small a ). r is a function of both 

n n 

parameters, and and of the frequency variable f. This is the 

reason for the concept of a complex frequency to represent the zero. In 

general we can use (19G.12) to represent the spectral estimate with the 

2 
amplitude terms r^ formally defined for each zero as: 

_ -Zna /f^ -ua /f^ 
r';(f) = [1+e ^ -2e ^ cos (TT( G - f)/f ) ] (19G.20) 
n n N 

with: 

or = ' — lxii\z |} a >0 (19G.21) 
n TT ' n ' n 

/ 

Consider the example shown in Figure 19G-1 for a 3rd-order process 

with a zero on the real axis and a single complex conjugate pair. For fre

quencies very near the zero, Z^, we have Trf/^ =" 0^ and f =• The esti

mated spectral density is approximately: 

â _ ''""K 
X n o -2TTa-/f^ -TT^yf^ 

r^(P^)r2(;p[l + e - 2e ^ cos (11(83 - f)/fjj) ] 

(19G.23) 

For ^ the spectral peak is influenced only by the closest zero 

and occurs at f = The estimated spectral density has a peak of: 

A ATP 

s_(f) —TT (19G.24) 
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For a « f„ the peak is symmetrical about f = B . If we define the 
n N n 

A 
frequencies 3^ + Af/2 as the points Wiere S^(f) is down from the peak value 

by an amount then the bandwidth ûf can be determined from the expression: 

Z-PLANE 

UNIT 

CIRCLE 

+jlm{z} 

frequency = f 

ReCz] 

Zeros of D(Z) 

Figure 19G-1. Complex Plane Interpretation of an MEM 
Spectral Estimate for a 3rd-0rder Process 

r'(B^ + if/2) 
n u 

K 
(19G.25) 

The solution for ^f in terms of the cosine function is given by: 

cos(|̂ ) = K̂ Cl-K̂ Kĵ ] (19G.26) 
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[1 + e ° 2e = ̂  

•^ = "I AKCCOSU^Cl - K^K^]} (19G.28) 

For small o?^, is very close to unity. As an example, take the solution 

represented by Equation 19F.15 and Figures 19F-3 and 19F-4. The appropri

ate factors are: 

f» f» 
Q!̂  = - — tn{0.943] = - (-0.0587) (19G.29) 

= 1.72 X10"3 Kg =- 1.0017 

Assume a width where the spectrum is down by a factor of = 2 and the 

solution is: 

Afg 2 
= - ARCCOS{0.9983} = 0.0374 (19G.30) 

This result can be verified from Figure 19F-4. 

Next we consider the spectral resolving ability of MEM for two closely 

spaced zeros near the unit circle. Assume they are symmetrically spaced 

about a nominal frequency such that: 

P. = B„ + Af/2 
(190.31) 

^2 = &o • Af/2 

A 
Peaks occur in S^(f) at f= 8^, and a valley occurs at f= 0^. 
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First assume the zeros are equidistant from the unit circle so = 

«2 = 0^^" Then the ratio of the dip to one of the peaks can be written as: 

r&g )r&8 ) -1 

II = K (19G.32) 

Equation 19G.32 can be evaluated using the results given by (19G.19) and 

the frequencies, = f and pj^=3^ + Af/2. Expanding the terms gives: 

5^ = K 

,nAf. 
[l + e " "-2e " "]Cl + e ° - 2e ° " cos (^) ] 

(19G.33) 

This results in a quadratic equation in cos(-^^) given by 

% 

[1 + 2K^K^] cos^ (^) - 2K2 cos (^) 

where; 

2Y 2 ^2Y 

+ [K^-K^K^(K2 + 1)] = 0 (19G.34) 

2e ° ̂  2e ° ̂  

For two zeros spaced from the unit circle such that q^= .01 (iZ^I ^0.99) 

and for a peak-to-valley ratio = 2 the quadratic equation can be solved 

to give: 

^^ 0.0556 (19G.36) 
& 
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The solution of (19G.34) must be done with high numerical precision because 

the coefficients are so close to a value corresponding to Af = 0. 

These equations illustrate the type of resolution, Af, needed to evalu

ate Equation 19G.1 when the zero locations are known from evaluating the 

A 
polynomials D(Z)  or Q(Z). A check on the accuracy of S^/f) is to numerically 

integrate it to be sure it is equal to the total power. If any peaks are 

unresolved the integration will yield a value less than the total power. 

A solution for resolving power when the zeros are not equidistant from 

the unit circle is much more difficult. Simplifying assumptions about the 

location of peaks and valleys are no longer valid. An estimator for the 

locations of the peaks and valleys as a function of Af would have to be de

termined. This more general problem has not been solved. 

To determine stability and accuracy of the estimate we need to relate 

the data to the computation of the zeros of D(Z). This will be done for a 

second-order process. For a second-order process the polynomial is 

D(Z) =-a2(2)-a2(l)Z + Z^ (19G.37) 

and the zero locations are: 

Zi 2= J SgCl) ± Y [*2(1)+ 4*2(2)]% (19G.38) 

If the roots are complex (a2(2) <0 and |4a2(2) ] >a2(l)) the solutions are: 

Zi 2= J SgCl) ±i j[4|a2(2)|-a^(l)]% (19G.39) 

Examples of second-order processes can be found in many texts. A good ref

erence is Fuller (1976, p. 54). 
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For conçlex roots the following solutions are obtained for the root 

locations and the sampled autocorrelation function of the process. The 

absolute values of the roots are: 

IzJ = iZ2l = la2(2) 1^ (19G.40) 

The sampled autocorrelation function for positive k is (Fuller, 1976): 

R (kAT) = A(kûT) sin [~ k^T+d] (19G.41) 

* ^ 

Cos(^ = J a^Cl) U^CZ) (19G.42) 

-3,(2) 

Tan((S) = CY-rq(^l tan (^) (19G.43) 

|a2(2)|^^^ ^-2TTQkAT 

sin0 (^9G.44) 

From the concept of complex frequency we identify; 

Of = - tn(|a2(2) 1^} 

3 = :^ ARCCOS{| 32(1) la,(2) 1^} 

(19G.45) 

(19G.46) 

Keeping these results in mind we can now consider the Burg algorithm 

for MEM and possible sampling effects. First of all we know that a^(K) is 

determined by minimizing the error of (Equation 15G.6) in a least squares 

sense. We also know that the total amount of data used for the estimate 

(Equation 15G.8) decreases with increasing K. This means that the variance 

of ag(K) for a given set of data increases with increasing K. Alternately 
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for a fixed value of K (K=2 in our example) the variance decreases with 

increasing amounts of data. Also as the data increases the variance of the 

estimated error (Equation 15G.4) decreases. The general trends of these 

variances are shown in Figure 19G-2. The concept of variance for a^(K) can 

be shown using Equation (15G.12) and defining an ensemble with index N to 

illustrate dependence on sample length: 

Var{^(K,N)} = E{a^(K,N)}sO N<= (19G.47) 

For large amounts of data the expected values of and a^(K) tend to 

zero for large K. For smaller data sets they tend to decrease until the 

mean is masked by the variability. For some maximum K = K^: 

E{a^(K^)}-0 (19G.48) 

3 = Pg .jCl - \ -1 (WG.4,) 
mm m m 

Typical trends are shown in Figures 19G-3 and 19G-4. For actual data 

records the masking effect is shown in 19G-5. 

The variability of |a^(K)| directly affects the distance between a 

zero and the unit circle (Equation 19G.45) thus affecting the peak value. 

In practical applications this can be seen as a change in peak value for 

increasing K and as the data record changes. 

MEM is becoming more widely known and used because it is an estimator 

which has better spectral resolution than the DFT for short data records. 

This effect can be explained for certain types of common sampling situations. 

The two most common examples are: severe oversanq>ling of short data records 
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N = Fixed Number of 

Samples 

w 
(S 
> 

K = N Increasing K 

K = Fixed Order 

> 

Increasing N 

Figure 19G-2. General Trends of the Variability of 

a_(K) for Fixed Data Records and for 

triable Data Records 
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Large N 

1 

a 
C—» 

K Increasing K m 

Figure 19G-3. Typical Trend in the Expected Value of 
a^(K) for Large Amounts of Data 

Large N 

P 
o 

M 

K 
Increasing K m 

Figure 19G-4. Typical Trend in E[P^] for Large Amounts of Data 
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Fixed N 

Increasing K N 

Figure 19G-5. Typical Trend for Actual Estimates of the 
Total Mean-Square Error of the One-Step 
Prediction 

with one periodic conçonent and a reasonable amount of bandlimited noise or 

long observation periods with a moderate sampling rate and bandlimited 

noise. 

Since the autoregressive coefficients can implement both a one-step 

predictor in time (Equation 13.35) as well as autocorrelation (Equation 

14.42) and since the coefficients are determined by minimizing the mean-

square error (Equation 15G.6) and are not explicitly dependent on the 

sançling interval (At = AT) , the estimate can be considerably inq>roved by 

oversanq>ling. Not only does it decrease the variance of a^(K) due to noise 

but once the data record is long enough to include more than about 60% of 

a cycle of the sinusoid represented by Equation 19G.41 the extrapolation 



www.manaraa.com

363 

property takes over and produces a strong periodic component. The extra

polation is helped by oversampling. For longer records the sampling prop

erties are analogous to those discussed in Chapter XII Section D, Part 4. 

A 
In effect a single period of R^(T) is oversampled and the extrapolation 

property completes the task of producing a sharp peak. 

The effect of increasing the order of the estimate on the spectral 

resolution is less obvious. For a given fixed record length, increasing 

the order increases the number of zeros of D(Z). Now only zeros close to 

the unit circle produce a significant effect on the spectral shape so for 

given periodicities in the data only these zeros are needed. For a finite 

and noisy record however these zeros are required to represent a least-

squares estimate for, all of the data. The net effect is to shift the 

zeros away from the unit circle. By increasing the order, K, of the esti

mate, additional zeros are added (additional degrees of freedom for the 

prediction) that are far from the unit circle thereby having little effect 

on shape and at the same time allowing the inçortant zeros to move closer 

to the unit circle. For this reason the spectral resolution is improved 

(sharper peaks) and the location of the peak is more accurate. The resolu

tion of two closely spaced and equal peaks is a function only of the dis

tance between their zeros and the unit circle. Figure 19G-6 illustrates a 

spectral representation of the effect of zero location. 

A particular zero, Z^, has a random distribution in a circular sense 

around some nominal location. The distribution for |z^| is a cross section 

of this circular distribution. When Z is close to the unit circle a small 
n 

change in location has a very gross effect on the amplitude and location of 
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Figure 19G-6. Spectral Representation of the Effect of Zero Location on S (f) 
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the peak. This shifting and variability can be seen for any practical 

record. A point of diminishing returns is reached where the average zero 

location is no longer moved closer to the unit circle by increasing the 

order, K. The order should not be increased beyond this point. A pictorial 

representation of this effect for an isolated zero near the unit circle is 

shown in Figure 19G-7. 

To Origin 

K= 2 

K = 4  

-TF 

(J^K=6 

\ 

K = 10 I k = 12 

K = 2 0  

K = 40 

K= 15 

K= 30 

K= 50 
= 60 

Arg{ẑ } 

Unit 'Circle 

To -z- = TT 

% 

Figure 19G-7, Variability of the Estimated Zero Location 
for Increasing Orders of the Estimate 
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H. DÎT and MEM Resolution Limits 

1. Introduction 

When considering the resolution of a spectral estimator, one must be 

careful to distinguish between the ability to detect and resolve periodic 

components and the frequency resolution to which the resulting estimate is 

displayed. The latter will be referred to as the display resolution while 

the former will be called the spectral resolution or simply the resolution 

of the estimator. 

An increase in display resolution is only a matter of increasing 

processor time. It makes the estimate appear more continuous and may be 

used to produce a more pleasing appearance. High display resolution is 

particularly needed for MEM because a sharp peak may otherwise be over

looked. For the FFT, higher display resolution may sometimes improve the 

frequency ambiguity of a spectral peak. 

In contrast, the spectral resolution of the estimator is an inherent 

property that is determined by the "quality" of the estimator and the ob

servation time for the data. It cannot be improved by postprocessing 

techniques. 

2. Display resolution 

For MEM spectral analysis the information about sharp spectral peaks 

is all contained in the zero locations of the complex polynomial, D(Z). 

These sharp peaks will always be displayed if the frequency interval Af 

(Equation 19G.1) is kept small enough. For a given polynomial, the dis

play resolution can be arbitrarily increased by decreasing Af without af

fecting estimator quality. 
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For the FFT, the display resolution problem caused by a sampled spec

trum can be minimized by either using a continuous estimator (Equation 

11.1) or by concatenation of zeros to the record. Zero concatenation is a 

well-established technique in FFT analysis and is often used to make the 

number of data points the required power-of-two. Concatenation forces the 

FFT to treat the data as though it were a periodic time pulse with a low 

duty cycle. For large orders of concatenation, the spectral estimate 

closely approximates that for a single time pulse. Concatenation also in

creases the apparent observation time thereby causing the apparent ampli

tudes and frequencies to shift slightly. This can sometimes result in a 

slightly better estimate of the frequency of peak amplitude. The disad

vantage to large order concatenation is increased processing time. A 

simple DFT does not require zero concatenation. 

3. Spectral resolution 

The fundamental resolution limit for the DFT is imposed by T^ and was 

given for two closely spaced sinusoids by Equation 12B.48. The Rayleigh 

resolution or one-half the bandwidth-between-first-nulls is given by: 

^ (19H.1) 

This resolution limit assumed a continuous estimator (Equation 11.1) and 

peaks of equal amplitude. Neither assun^tion is the case in most practical 

FFT applications. In most FFT analysis, the estimated location-of-peak is 

within + — Hz. of the true peak. Zero concatenation does not in^)rove this 
y 

resolution. 
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Improvements in the spectral resolution of the DFT can only be ob

tained by increasing the observation time, T^. 

The spectral resolution for the MEM spectral estimator is limited by 

the number of independent samples of the time series (observation time, T^) 

and the degrees-of-freedom for the spectral estimator (order of the esti

mated autoregression). Increasing the number of samples decreases the 

variance of the estimate of the expected values of the autoregressive co

efficients. Increasing the order of the estimate allows more degrees-of-

freedom to approximate higher order regressions thereby minimizing the 

error associated with the most prominent spectral peaks. This choice of 

the degrees-of-freedom is contrasted with the situation for the DFT where 

the order is fixed. 

Mathematical derivations for MEM resolution as a function of the 

number of samples and the order of the estimate have yet to be published. 

4. MEM resolution limi ts 

The resolution limit for MEM spectral analysis in terms of the number 

of samples and the order of the estimate is much more difficult to assess 

than for the DFT. For the latter, the degrees -o f - freedom are fixed due to 

the periodic assumption and hence for each two time samples there is an 

additional pair of orthogonal components. Also, there is no least-mean-

square error to be minimized. In MEM the degrees -of - freedom are selected 

by the user and hence the resolution limit is affected both by the number 

of samples and the order of the estimate. 

The presentation of MEM resolution in Section G of this chapter ad

dresses the properties associated with the location of the zeros of D(Z) 
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but does not present the effects of the number of samples or the order. 

Some of the present MEM literature refers to the assumption that MEM uses 

all of the data at each step in the recursive algorithm. It does notI End 

effects, although minimized in the Burg algorithm (Equations in Chapter XV, 

Section G), are not eliminated for higher order autocorrelation components. 

Reduction in the amount of data used is clearly evident in the summation 

index of Equation 15G.12. End effects cause an increase in the variance of 

the autoregressive coefficients as the order is increased (Figure 19G-2) 

because of the reduced amounts of data used in the estimate. 

Parzen (1969) has suggested, but did not prove, a method for deter

mining the order based on the variance of the least-mean-square error esti

mate. Several examples examined by the author show that this technique 

produces an estimate that does not have the best resolution inherent in 

the estimator. A better criteria is the stability (or variance) of the 

location of a critical zero of D(Z). 

A general rule is to choose a sample length that will span more than 

one-half of the period of the lowest frequency conçonent and chose an order 

high enough so that the variance of the zero locations of spectral peaks 

of interest is minimized. A detailed example will be given at the end of 

this section. 

5. DFT resolution limit 

From an estimation theory viewpoint, the resolution limit for the DFT 

is given by Equation 19H.1. It states simply that the resolution is limited 

by.the observation time, T^. From a theoretical viewpoint, the exact effect 

of DFT sampling on the estimated amplitude spectrum of a periodic function 
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is specified by the estimated Kronecker delta function defined in Equation 

12D.11 and used in Equation 12D.10. 

Figure 11-1 illustrates the bandpass or weighting effect represented 

by 5^q(N, T^, T^) for a single spectral component. The weighting function 

is specified for each harmonic number or frequency. The true amplitude of 

the spectral component is slightly reduced with the corresponding power 

distributed to other frequencies. The resolution limit for smaller ampli

tudes is limited by the peak value of spurious components. The magnitudes 

of the spurious components can be related to the "parent" peak by using 

the spectral mixing formula. 

For a large peak at frequency f^, the principal and spurious complex 

amplitudes can be obtained from a single term of the series in Equation 

11.20: 

N T 

~ ̂L^2N + 1 T„^'^2N+1^^ (19H.2) 
k=l " "N 

For estimation purposes, is replaced by its estimate %Aen calculating 

spurious components. An example of this effect is illustrated in Figure 

12D-3. For T^ = 3.1, T^ = 1.0, and (2N+ 1) = 21, the principal component and 

frequency are: 

|c^( = 2.0 fj^= 0.968 Hz 

The nearest spurious component has an anq>litude and frequency of: 

|cy.i| =0.186 fĵ =̂1.29h2 
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A small adjacent spectral component could not be resolved if its amplitude 

d i d  n o t  e x c e e d  | | .  

The location of a spectral peak near zero frequency can be masked by 

the average value if only a fraction of a cycle is sampled. This type of 

error is illustrated in Figure 12D-2. Since partial cycles cannot be re

solved using the DFT it is highly desirable to remove the average value 

before processing. 

6. Example for MEM 

The interferometer data used as an example in Sections D, F, and G of 

Chapter XVII is also an excellent practical example for illustrating the 

effect of filter order on the MEM spectral estimator. The output from 

PROGRAM-07 in Appendix III provides the data used in this example. 

The time series (HER A 7/29/75) was processed using a variable filter 

length, K = 1 - 15. The estimated autoregressive coefficients are printed 

for each order of the estimate. Figure 19H-1 illustrates the variability 

of the estimated coefficients as a function of the chosen filter length for 

K=l-9. The variation of the magnitude of these estimates directly affects 

the zero locations of the z-transform polynomial they generate. The most 

variable coefficient is a^(K) because it is the independent variable for 

the one-step prediction. 

The estimated coefficients were used to generate the complex poly

nomial, D(Z), as described in Equations 19G.4 and 19G.5 and the roots were 

obtained using a polynomial root solver. A summary of the results for 

filter orders up to ten is shown in Table 19H-1. Each root is described 

by a top entry which is the magnitude (||<1) and a bottom entry which is 
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the phase angle in radians (-rr̂ ArgCz^} ̂-Ht) . These root locations are 

plotted on the unit circle as shown in Figure 19H-2. The zeros represent

ing the principal peak are labled and are marked with a dotted line. 

1.5 

1 .0  
NS = 41 

0.5 

0.0  

-0.5 

-1.0 

1 2  3  4 5 6 7 8 9  Order, K 

Figure 19H-1. Variability of the Estimated Autoregressive 

Coefficients as a Function of the Order, K, 
of the Estimate 

The estimated location-of-spectral-peak for varies as a function 

of the order K. Figure 19H-3 illustrates this variation. This character

istic was discussed in Section G and an example plot given in Figure 19G-7. 
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+2.60 

+0.8283 
+1.71 

+0.8128 
+ .349 

+0.9816 

+ .727 

+0.8262 
+2.50 

+0.8554 
+1.61 

+0.8893 

+ .345 

+0.5255 

+ TT 

+0.9844 

+ .725 

+0.8021 
+2.58 

+0.8302 

+1.56 
+0.9097 

+ .337 

+0.4966 

+2.25 
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Figure 19H-2. The Effect of Increasing Order on Zero Locations 

in the Unit Circle 
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Figure 19H-3, Migration of the Estimated Location of 

the Spectral Peak Represented by 

Several interesting features of the MEM spectral estimator are illus

trated in this exanq>le. The first thing we realize is that the mean-square 

estimation error is not a suitable measure for selecting the order of the 

estimate. From Figure 17G-5 we see that the error decreases very little 

beyond order K = 2 and yet Figure 19H-3 shows the estimated location-of-

spectral peak inq)roving up to order K=15. This improvement comes about 

because the degrees-of-freedom were increased thereby allowing the zero 

location to migrate to its preferred position. Also the peak became 
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sharper as indicated by the magnitude of Z, approaching unity. The impor

tant conclusion is that the zero location is a better indicator of the 

desired order of the estimate. 

Figure 19H-2 shows the effect of increasing order on all zero loca

tions. It is important to note that each spectral peak to be resolved 

requires two additional orders of the polynomial. This is illustrated for 

order K=5 where two peaks are modeled. In other words, only those zeros 

in the upper-half-plane have a significant effect on spectral shape. From 

Table I9H-1 and Figure 19H-2 we also see that the identity of the most 

important zeros can be preserved over many orders of the estimate. This 

property also helps in the selection of a maximum order. 

The techniques of analysis presented in this example are typical of 

those that may be used for practical MEM spectral estimation. For each 

prominent spectral peak a separate plot similar to Figure 19H-3 should be 

made. The "true" location is marked for reference and illustration. In 

general an estimate of the true location must be made. Estimates of the 

total power in a spectral peak must be obtained by confuting the area under 

the peak. This power spectrum technique is in direct contrast to FFT anal

ysis where the amplitude of the peak is important. 

I. Review of Connon Spectral Estimation Errors 

1. Introduction 

This review of some of the more common errors associated with the es

timation of anq)litude and power spectra will specifically address the DFT 

(also FFT) and MEM. The techniques and effects of data preprocessing on 

errors have been discussed in Chapter IX, Section C. Here we concentrate 
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on the major effects of observer bias and error and intrinsic estimation 

errors. Gross observer error, equipment malfunction error and lack of 

stationarity will not be addressed. 

2. Aliasing 

Aliasing or the frequency fold-over effect caused by sampling at a 

rate less than the Nyquist rate has been discussed in Chapters VI and IX. 

In the FFT literature, aliasing has been given considerable attention while 

in MEM literature it is seldom mentioned. The reader should be keenly 

aware that it can occur in both types of analyses. 

The effects of aliasing can be minimized or eliminated by careful ex

perimental design such as prefiltering ahead of the sampler. Under certain 

special circumstances aliasing is desirable. An example cf a practical 

application of aliasing is for the detection of a sinewave in a spectrum 

much wider than the principal alias. The fold-over effect allows the sinu

soid to be detected without an increase in the sampling rate. 

For the vast majority of spectral analysis applications aliasing must 

be eliminated and, when reporting results, it is helpful to inform the 

reader as to how this was accomplished. 

3. Numerical stability and accuracy 

Because the word length is finite for digital processing systems, it 

is possible to introduce noise and instabilities into the various spectral 

estimation algorithms. Truncation or roundoff error will introduce wide

band noise into the estimate. 



www.manaraa.com

378 

Truncation can be serious for MEM because, for good signal-to-noise 

ratios, it can cause a zero of the characteristic polynomial, D(Z), to lie 

on the unit circle. Some applications may require the use of double pre

cision or the addition of a small amount of wideband noise to eliminate 

this effect. A well designed MEM algorithm should check for this effect. 

For a majority of practical scientific data processing, numerical 

stability and accuracy will not be a problem. Only for the cases of very 

high predictability or very small word length should the user apply special 

precautions. 

4. Spectral smoothing 

Spectral smoothing or the loss of spectral resolution caused by a 

finite observation time is discussed in Chapter IX. Smoothing in FFT anal

ysis is caused by a finite time window. In the Blackman-Tukey method it is 

caused by a finite lag window. Smoothing in MEM analysis is the result of 

using a smoothed estimate for extrapolating the autocorrelation function 

and using a single zero of the complex polynomial, D(Z), to represent a 

single spectral peak. 

The undesirable effect of spectral smoothing can only be reduced by 

increasing the number of samples (or the observation time). For MEM, im

proved spectral resolution (over FFT) is the result of using an estimator 

that has a selectable degrees-of-freedom. 
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5. Spectral leakage and end effects 

Spectral leakage (or spectral mixing) is caused by the finite obser

vation time (finite time window) and is discussed in Chapter IX. The spec

tral mixing formula derived in Chapter XI is an exact model for represent

ing the affect of a specific DPI estimate on spectral leakage. For MEM, 

spectral leakage is observed as a shift in the absolute magnitude of the 

zeros representing spectral peaks. Leakage reduces the ability to resolve 

minor components because a large peak may have leakage that obscures a 

minor one. For DPI analysis the spectral mixing formula can be used to 

place an upper bound on leakage and hence on minor component detection. 

For MEM, no technique, as yet, exists. 

The variability of estimated autocorrelations with increasing lags is 

caused by the end effect of finite data records. For the Blackman-Ttikey 

method, end effects are minimized by the proper choice of a lag window 

(Blackman and Tukey, 1958). For MEM, end effects are minimized by the 

least-squares smoothing used in extrapolating the autocorrelation function-

End effects for MEM are further discussed in Section G of Chapter XV. 

6. Noise and statistical variability 

Sample records of the time series representing a physical process are 

usually contaminated by random noise inherent in the measurement process. 

Also, since the sample records are finite, the estimated means of the 

various parameters have a considerable variability that depends on the 

length of the sample. These effects introduce random noise and statistical 

variability into the various spectral estimators. 
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The effect of noise on the DFT estimate was discussed in Section D of 

this chapter. Statistical variability due to sampling effects can be 

analysed using the spectral mixing model and Rayleigh statistics. 

For MEM, measurement noise is modeled as Gaussian noise with a band-

limited spectrum. In this model, all noise is treated equally so measure

ment noise and random processes effects are indistinguishable. Statistical 

variability appears in the estimated autoregressive coefficients and is 

caused by noise and sampling effects. Variability is reduced by taking 

longer sample records. 

Spectrum averaging is frequently used in FFT analysis to reduce the 

effects of statistical variability. In MEM, spectrum averaging and in

creased sample length are both helpful. 

7. Fractional period sampling 

All spectral estimators perform poorly if only a fraction of the period 

of a spectral peak is sampled. For DFT (and FFT) analysis, samples less 

than 0.9 T^ are unusable as most of the amplitude will appear as a zero 

frequency component. For all DFT applications, the data taking method must 

be designed so at least nine-tenths of the period of the lowest frequency 

component is sampled. 

The MEM estimator can give good results when only 60% of a period is 

sampled. This requires severe oversampling and a reasonable low noise 

variance. MEM performance is discussed further in Section G of this 

chapter. 
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8. Spectral strength or magnitude 

Interpretation of the results of a spectral estimate most often in

volves the selection of the "most prominent" spectral component. For DFT 

(and FFT) analysis this simply means choosing the highest peak because the 

height is proportional to the amplitude of a sinusoid at that frequency. 

For MEM, the estimate is a power spectral density and the amplitude of 

a periodic component is proportional to the area under the peak. When 

analyzing MEM records, one should avoid the temptation of looking at the 

heights of the components and instead compute the areas for comparison. 

9, Location-of-spectral-peak (LOSP) 

The location or estimated frequency of a spectral peak is another 

important property of a spectral estimator. For FFT analysis, the LOS? is 

affected by the number of samples and the record length and by zero con

catenation. If only a fraction of a period of the lowest spectral component 

is sampled, the LOSP for that component will occur at zero frequency. The 

LOSP for MEM analysis is affected by the number of sauries and the order of 

the estimate. Typical effects where discussed in Sections G and H of this 

chapter. 

The user must realize that the LOSP is statistically variable from 

record to record and take this into account when reporting results. If 

many records are available it is possible to get an estimate of the vari

ance of the LOSP. 

i 
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10. MEM display resolution 

Since the MEM spectral estimator (Equation 15F.1) is continuous with 

frequency, a digital implementation requires the selection of a display 

resolution, 6f. For a very sharp peak it is possible that the output will 

not show the peak because it falls between frequency samples. For this 

reason a practical MEM program must contain a check for missed spectral 

a 
peaks. One way is to numerically integrate S (Af) to see if the total 

power is recovered. Another way is to compute the zero locations for D(Z) 

to see if one lies extremely close to the unit circle. MEM display resolu

tion is a practical problem that must always be accounted for by the user. 
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m. appendix i - mathematical techniques 

Â. Integration and Riemann Summation 

A function f(x) is said to be Riemann integrable if in the limit 

b n 
b - a\ b - a 

I = r f(x)dx = lim Z f(a + k ) 
ab n-*« k=l # 

(Al.l) 

v^ere the interval a - b is divided into n segments with each segment having 

a width of (b - a)/n. If the number of segments, n, is not taken to the 

The actual value of the estimate depends upon how many segments are used 

and how the sum is taken. For small n, a good technique of estimation is 

to evaluate the function at the midpoint of the segment for use in the 

summation. The integral estimate using this procedure becomes: 

Figure Al-1 illustrates this procedure. 

For the purposes of this research work it was discovered that a 

specialized form of the Reimann sum approximation was very well-suited to 

Fourier series analysis. If we assume that f(x) is shifted so that the 

origin is at the midpoint of the independent variable and that there are 

an odd number of segments, the definite integral 

limit, the Riemann sum will yield an estimate of the definite integral I^^* 

(A1.2) 

+a 

laa = I (A1.3) 
-a 

can be estimated with the following sums 

(A1.4) 
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f(x) 

n= 6 

k=4 

k=3 

k=2 

k=5 
k=l 

•>- X 

b-a b a 

Figure Al-1. Riemann Sum Approximation for a 

Definite Integral 

2 +n 9 

aa " (2N +1) [2N+1]^ (A1.5) 

where: 

k = 0, + l, + 2,...+N. 

n = (2N +1), the number of segments - assumed odd. 

2a 2a 

Figure Al-2 illustrates this procedure. 

This particular estimator for the definite integral is used many times 

throughout this report. Its usefulness is illustrated in several of the 

derivations involving the estimation of the complex Fourier coefficients 

for digital Fourier transforms. 
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f(x) 

k=0 
k«-l 

k=+2 

k=-2 

+a -a 

Figure Al-2. Riemaim Sum Approximation Used in 

Fourier Series Analysis 

B. Hilbert Space Vectors 

An infinite-dimensional vector space is called a "Hilbert space" and 

is denoted symbolically by In the "vectors" are not directed line 

segments, but rather are conçlex functions of real variables. We define 

a "vector" in 9^ to be a complex function, ijr, of a real variable x. In 

other words, a "vector" in^^ is a rule of correspondence which assigns to 

each number x, a conqplex number i|r(x). The vector space is defined as 

follows: 

a) Scalers are the set of all complex numbers, c. 

b) The distributive law of addition holds (vector addition): 

*(x) = (A1.6) 



www.manaraa.com

394 

c) The vector inner product is defined to be 

iir*(x)itr2(x)dx (A1.7) 

with the following properties: 

(A1.8) 

(A1.9) 

1(4^,^2)1 ^ (Al.lO) 

d) The vector norm is defined as 

($,*) = J |Kx)|^dx (Al.ll) 

all X 

and a function $(x) must have a finite norm, < % to be a 

vector in 

e) A set of ̂ -vectors Cor^C*) } fo™ a vector basis set in^. 

The set is said to be conçlete if any vector in ̂  can be con

structed from a linear combination of the basis vectors [o^(x)}, 

The basis set is orthogonal if the inner product (0^,0^) is zero 

for all a^m. The basis set is orthonormal if (or ,Qf ) = 6 
n m nm 

(the Kronecker delta). 

f) An orthonormal set of eigenvectors [a^(x)} are said to form 

an orthonormal basis set in ̂  if the set is both orthonormal 

and complete. Any given vector, f(x), can be written as an 

infinite-dimensional (infinite series) linear combination of the 

orthonormal basis set 
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CO GO 

(Al.12) 

\^ere the a^' s are the complex expansion coefficients (eigen

values of ijr) defined by the inner product: 

a^ = (o^,i|r) = r Of* (x)iif(x)dx (A1.13) 

The vector norm of $(x) can be written in terms of the expansion 

coefficients as: 

($,*) = 2 |a P 
n=l " 

(A1.14) 

The theory of Hilbert space vectors was successfully applied to Fourier 

transform theory to give many of the important derivations shown in the 

text. This formulation also can provide useful insight into the problem of 

estimating the complex Fourier coefficients. 

Mathematical functions which are made up of parameters which are com

pletely specified for all time and all values of the independent variables 

will be called deterministic. This terminology is used to denote that 

there is no "randomness" associated with the function. For practical pur

poses, a function of time x(t) is deterministic if it can be exactly charac

terized by a Fourier series. It is philosophically satisfying to realize 

that an observable function of time, x(t), must be periodic and therefore 

represented by a Fourier series if it is to be deterministic. Time funcw 

tions ̂ ich are not periodic cannot be completely specified because an 

infinite observation time is required. 

C. Deterministic Functions 
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Deterministic time functions are periodic in the time domain and ex

hibit only line spectra in the frequency domain. Deterministic functions 

cannot have continuous spectra. A pathological exception to this defini

tion exists for single pulses in time. These functions are known for all 

time and have an inçlied period which is infinite. They also are charac

terized by infinite and continuous power spectra. 

D. Noise and Random Processes 

A random process will be defined to be a collection of time functions 

and an associated complete probability description. The entire collection 

of time functions x^(t) is called an ensemble of random time functions of 

i6*ich the n^^ function is called a sançle function of the process. In 

general, only one sample function of a random process can ever be observed; 

the other (n - 1) sançle functions represent all other possible realizations 

which might have occurred but didn't. The following properties of random 

processes are inçortant for our purposes: 

a) Continuous — Discrete 

In a continuous random process, the random variables x^(t^) at 

time can assume any value within a specified range of values. The 

probability density function is continuous and has no Dirac delta 

functions in it. A discrete random process is one in which the random 

variables can assume only certain isolated values. The probability 

density function contains only Dirac delta functions and does not have 

a continuous component. A mixed random process is one in which 

probability density function may have both discrete and continuous 

properties. 
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Deterministic — Nondeterministic 

If future values of x^(t) cannot be exactly predicted from ob

served past values, the process is called nondeterministic. If future 

values can be conçletely specified, the process is called determinis

tic. It is possible for a function to be random over the ensemble but 

not random with respect to time. An example of this type of process 

is an ensemble of sinewaves, x^(t), each with a different ançlitude, 

A^, ̂ ere is a random variable. Any sançle function of this pro

cess would be deterministic with respect to time. 

stationary — Nonstationary 

If all of the marginal and joint density functions describing a 

random process do not depend upon the choice of time origin, the 

process is said to be stationary. If these density functions do de

pend upon time, the process is called nonstationarv. Most real physi

cal processes are nonstationary to some degree but quite often they 

can be characterized as stationary for practical considerations. 

A process is said to be stationary in the wide sense (or covari-

ance stationary) when the expectation value, E{x(t^)}, is independent 

of the choice of time origin and when E[x(t^)x(t2)] depends only upon 

the time difference, (t^ - tj^) = T. This guarantees that the mean value, 

mean-square value, variance, and correlation coefficient are all inde

pendent of the choice of time origin. 

Ergodic — Nonergodic 

A random process is said to be strictly ergodic if the time aver

age of one sangle function is equal to the ensemble average. It is 
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ergodic with respect to its correlation function when the ensemble 

correlation function is equal to the time autocorrelation function. 

For ergodic processes, mean value and higher order moments can 

be determined by time averages over an infinite interval as well as 

by ensemble averages: 

+o +T/2 

= r x^p(x)dx = lim % J x°(t)dt (A1.15) 
-» t-®^-t/2 

In this report, most random processes will be continuous, nondetermin-

istic, stationary, and ergodic. A sample function of the process will 

be called "noise" or a random time function. Usually, only one sample 

function will be available for analysis and its statistical properties 

will be estimates of the "true" values. 

£. Correlation Functions for a Random Process 

The autocorrelation function Ry(t^,t2) of a random process is defined 

as the joint moment of the random variables y(t^) and yCtg): 

+00 +03 

ECYCtpYCtj)} « = J J 7i72^(yiy72^^y2 (Al.16) 
••CO — GB 

The autocovariance, CyCt^.t^) of the process is defined as: 

E{[Y(tp - y(tp ICYCtg) - YCtp]} = Cy(tj,t2) (A1.17) 

For a "wide-sense" stationary process, the ensemble averages defined 

above are independent of the choice of time origin and the autocorrelation 

function becomes 

Ry(T) * ECY(t)Y(t+T)} (A1.18) 
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where T  =  ( t ^ - i s  c a l l e d  t h e  " l a g  t i m e " .  F o r  s t a t i o n a r y  p r o c e s s e s ,  

the time autocorrelation function and time autocovariance function are 

defined as 

, +T/2 
R ( T ) = lim - r y(t)y(t+ T)dt (A1.19) 
y T- ® -T/2 

and: 

1 +T/2 
C ( T ) = lim - F  [y(t) - y(t) ][y(t+T ) - y(t + T )]dt (A1.20) 
y T-*» ̂  -T/2 

For most of the work in this report we will let x(t) represent a ran

dom variable with zero mean and then define a zero-mean autocovariance 

function as: 

, +T/2 
C ( T ) = lim - R  x(t)x(t+ T )dt (A1.21) 

* :T/2 

The autocovariance function is very important in the study of random pro

cesses and random time functions because it is used to define the power 

spectrum of the process. 

F. The Power Spectrum of a Random Process 

The power spectrum of a random process is defined as the Fourier 

transform of the autocorrelation function. For a wide-sense stationary 

random process the autocorrelation function is 

1 
R_(T) = lim - r x(t)x(t + T)dt (A1.22) 
X T-œl i^/2 

where x(t) is a sample function of the process. The autocorrelation func

tion and the power spectral density function, S^(ui), (also called the 
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second moment spectral density) are related by the Wiener Khlnchine rela

tions (Cooper and McGillem, 1971, p. 148): 

-H» 

In theory, a knowledge of the autocorrelation function is equivalent 

to a knowledge of the power spectral density function. 

Stochastic processes which generate a random time series can be suc

cessfully modeled as moving average processes, finite autoregressive pro

cesses, or autoregressive-moving average processes (Koopmans, 1974, Ch. 7). 

These models can then be used to generate an infinite time series, a dis

crete autocovaxriance function, and a continuous power spectrum. This type 

of analysis is widely used in statistics and is becoming increasingly 

isçortant in engineering for studying the spectra of stochastic processes 

using the maximum entropy method. 

A finite moving average process is modeled by the following series 

(A1.23) 

(A1.24) 
—00 

G. Autoregressive-Moving Average Processes 

m 
x(t) = S a. § (t - k) 

k«-M * 
(A1.25) 

where 2M+1 is the order of the series and the a^'s are real constants. 

The sequence of uncorrelated random variables, §(t): t = 0, +1, ..., models 

a white noise process. The common mean for this sequence is E(§(t)}=0 
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2 2 
and the variance eC§ (t)}=a . The finite moving average model can be 

interpretated as the weighted sum of 2M+ 1 random and completely indepen

dent inçulses, §(t), occuring at past and future times which gives the 

value x(t) at time t. These induises (called random shocks by Koopmans) 

are most commonly referred to as innovations at time t (Parzen, 1969). 

If we inçose the requirement of causality and consider models which depend 

only upon present and past innovations, we obtain a one-sided moving 

average; 

The model for a moving average process has wide applicability. In fact, 

every weakly stationary (covariance stationary) process that has a strictly 

continuous spectrum can be approximated arbitrarily close (in a mean-

square sense) by a finite moving average process. Koopmans (1974, p. 214) 

shows that every weakly stationary process with a continuous spectrum has 

an infinite moving average representation. 

The scheme of linear autoregression is a technique that is used to 

approximate the value of a given finite series at a time t by some 

weighted sum of past values of the series. Finite autoregressIve proc

esses are a class of finite parameter models that may be represented by 

this approach. The finite order autoregression satisfies the equation: 

2M 
\5(c-k) (A1.26) 

2M 
S b x(t - k) « |(t), (t - 0, +1, +2 
k=0 * 

> • • • > ) (A1.27) 

The boundary conditions for this series are 

(A1.28) 
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and since the innovations are independent and the x(t)'s and the innova

tions are mutually independent, the expectations of the following products 

must be zero: 

BCX(S) C (t)} = 0 for all s^t-1 (Al.29) 

EC§(S) § (t)} =0 for all s # t (A1.30) 

The autocovariance matrix elements for a stationary process are 

defined as: 

E[x(t -p) X (t - k)} = C(p - k) (A1.31) 

The autocovariance matrix elements can be related to the expansion con

stants, bj^, and to each other by the Yule-Walker equations. These equa

tions are derived by multiplying both sides of Equation A1.27 by x(t - p) 

and taking the expectation: 

2M 2M 
E {x(t - p) S b. x(t - k) ] = Z b E (x(t - p)x(t - k) } 

k=0 k=0 K 

» E{x(t-p) |(t)} = 0 (A1.32) 

p = 1, 2, 2M 

Substituting into (A1.32) with the definition of the autocovariance 

matrix elements gives: 

2M 2M 
Z b C(p-k)-C(p) + S b,C(p-k)-0 (Al.33) 
k=0 k-1 ^ 

This gives the Yule-Walker equations (b^ * 1): 

2M 
E b. C(p - k) - -C(p) (A1.34) 

k=l 
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Equation Al.32 is similiar to an orthogonality statement about the auto-

covariance elements and the Yule-Walker equations express a particular 

autocovariance as a weighted sum of the others. 

The variance for the process is defined as the expectation of the 

product of x(t) and |(t): 

m ' 
E(x(t) § (t)} = S b,C(k) = a (A1.35) 

k=0 

This equation is used to estimate the variance of the process from the 

autocovariances and the autoregressive coefficients. In nmin'Tmrm entropy 

spectral estimation, this variance is called the error power of the process 

and is minimized by a least-squares criterion. 

An autoregressive series can also be used as a linear predictor. The 

series can be extrapolated one unit ahead in time by using the following 

equation: 

2M 
x(t + l) = §(t + l) - S b x(t + l-k) (A1.36) 

k=l 

The best linear one step predictor (in a least-squares sense) is given by 

(Koopmans, 1974, p. 228): 

A . 
x(t) « - 2 b x(t +1 - k) (A1.37) 

k=l K 

The one-step prediction error is equal to the innovation variance: 

E([x(t + 1) -x(t)f ] = E£§^(t + 1)}= (A1.38) 

The autoregressive process can be thought of as high order Markov 

process. That is, the state or value of the series at time t depends only 
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upon the previous states or values. Markov processes are important to the 

study of random vairiables, probability, and discrete-time random processes 

(Thomas, 1969, p. 114). 

Mixed autoregressive-moving average processes are modeled by a com

bination of finite autoregressions and finite moving averages (Koopmans, 

1974, p. 240): 

q r 
S d x(t-p)= S auç(t-k) (Al.39) 
p=0 P k=0 K 

This type of model can be viewed as a linear filter with an output of 

x(t) in response to a white noise input, §(t). The transfer function for 

the filter can be obtained from the z-transform as: 

I a.e":'"̂  
k=0 

H(U)) = (A1.40) 

I de-j'"? 
p=0 P 

The autoregressive-moving average process can also be modeled by a high-

order recursive filter. The output of the filter, y(t), is described by 

(Otnes and Enochson, 1972, p. 89): 

q r 
y(t) = Z g x(t - p) + Z h^(t - k) (A1.41) 

p»0 P k=l 

The filter is modeled by the parameters, g and h, . The cooplex transfer 
P ^ 

function for this filter is: 

H(ll!) - -^2 (AI.42) 

i- I 
k=l ^ 
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H. The Power Spectrum of an Autoregressive-Moving Average Process 

By using a filtering model, the power spectrum for a moving average 

process can be estimated by ((«= 2Tdcût) 

2M 
S a^e 

k=0 ^ 

-j(Ck 
(A1.43) 

\(4iere x(t) is modeled as the output of a digital filter with white noise 

input §(t) and a conçlex transfer function of: 

2M 
•jujk 

(A1.44) 

The spectrum for a finite autoregressive process can be defined from 

the theory of inverting linear filters and z-transforms (Koopmans, 1974, 

p. 217): 

,__,2 
iE(u)) r 

£ 
2IT 23$. 

Z be 
k=0 

•jtuk 
(A1.45) 

The spectrum for a autoregressive-moving average process is given by: 

2 .  . 2  £  
2n 

r 
S a, e 
k=0 ̂  

-juuk 

I d e-j'"? 
p=0 P 

(A1.46) 
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I, Window Functions 

The concept of a window function is very useful in the study of spec

tral analysis and sasçled data systems. The window function serves as a 

mathematical tool to "bridge the gap" between theoretical concepts and 

empirical analysis techniques. Its most important use is to model the 

effect of finite data and finite observation times on estimated autocor

relation functions and estimated power spectra. There are three types of 

window functions to consider; the data window, the lag window, and the 

spectral window. 

The data window (also called the observation window) models the effect 

of a finite observation time. A continuous time function, x(t), which may 

hypo the tically exist for all time, can be observed for only a finite time, 

T^. This function may be periodic, stochastic, or mixed and its spectral 

bandwidth may be very large but all of its properties must be determined 

from those values in the observation interval, T^, which are known. From 

this finite observation, one usually tries to obtain estimates of such 

characteristic parameters as average value, mean-square value, autocorrela

tion function, and power spectral density function. The length of obser

vation time (width of the data window) has a profound effect on this 

estimate. 

The inherent process of observation forces all data windows to be 

rectangular functions. The observed data function, denoted by a circumflex 

accent, is the product of the real function and the data window function: 

x(t) - h^(t)x(t) (A1.47) 
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The estimated properties of x(t) will generally be different than the 

"true" properties of x(t). As a general rule, when the observation time 

minimized. This is especially true when the spectral bandwidth of x(t) is 

limited. The effect of finite observations on the amplitude spectral 

function can be seen by taking the Fourier transform of both sides of 

Equation A1.47. The resulting estimated amplitude spectrum, assuming the 

Fourier transform of x(t) exists, is obtained as: 

This convolution of the data window spectral function with the "true" 

amplitude spectrum causes a spectral smoothing effect and a loss in spec

tral resolution. Also, the spectral window will introduce spectral mixing. 

Â rectangular window causes the most spectral mixing and to minimize this, 

some type of window smoothing may be employed. A data function can be 

tapered at each end to minimize the discontinuity caused by the observa

tion. Various types of data windows and an analysis of their performance 

can be found in Otnes and Enochson (1972, p. 281). 

The lag window is used primarily to model the effect of a finite 

autocovariance function, C^(T), vbere r is called the lag time or simply 

the lag. In the Blackman-Tukey method of spectral analysis, the lag window 

is also used to reduce the effect of statistical variance by ençhasizing 

lag values close to zero lag. The apparent or observed autocovariance 

fonction, C^(T) must be finite because the time function, x(t), is observed 

becomes large, the properties of x(t) become good estimates of the 

properties of x(t) and the effect of a finite observation time becomes 

Aw) = ̂  J Hj(m-X)x(\)dX (A1.48) 
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only for a finite time. An unbiased estimate for the autocovariance 

function has been defined as (Blackman and Tukey, 1958): 

+(Tjj-1tI)/2 

Cg(T) = ̂ 3[t| J - T/2) x ( t +  T/2) d t  Ixj <X^ (A1.49) 

- ( T j j -  | T 1 ) / 2  

This definition produces an autocovariance function which is even and 

estimated over the lag interval For statistical reasons, this 
N N ' 

estimate is best for values of lag time near zero. The variance of the 

estimate becomes very large as the lag time approaches +T^. Blackman and 

Tukey suggest using a lag window function to modify the shape of C^(T) so 

that lag times near zero are emphasized. 

The apparent or observed autocovariance function, when multiplied by 

a suitable weighting function (lag window function). Is called the modified 

apparent autocovariance function and its Fourier transform gives a smoothed 

estimate of the power spectrum of x(t). This modification produces an 

autocovariance estimator that is defined by the equation 

(?(T) = D(T)Ĉ (T) (A1.50) 

where the lag window function, D(T), may be chosen from a variety of 

functions that are commonly used for the purpose of spectral smoothing. 

Lag window functions have been very rigorously investigated for their 

properties in an effort to produce a window function which will maximize 

spectral resolution and minimize spectral "leakage". Names for window 

functions commonly used In the literature Include; Banning window, Hamming 
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window, Goodman window, Parzen window, Goodman-Enochson-Otnes window, and 

Bartlett window. Generally speaking, all lag windows have a general shape 

like a cosine bell or a smoothed sine function. A rectangular window is 

commonly used in theoretical treatments of spectral analysis but usually 

not in practice because it has severe leakage problems. Further discussions 

of window functions can be found in Otnes and Enochson (1972), Koopmans 

(1974), Blackman and Tukey (1958), and Papoulis (1973). 

The spectral window function models the spectral smoothing effect 

produced by a lag window. The spectral window function is defined as the 

Fourier transform of the lag window function. The expected value of a 

collection of estimated spectral density functions is the convolution of 

the spectral window function with the "true" spectral density of x(t). 

The various relationships between the lag and spectral windows and the 

"true" and estimated spectra are summarized below: 

P(f) = j*CC(T)} (true spectrum) 

^(f) = ̂ (<5(T) } (a single spectral estimate) 

(A1.51) 

(A1.52) 

= 3:[CQ(T)D(T)} 

(spectral window) (A1.54) 

(A1.53) 

EC^(f) } = J Q(f - X)P(X)dX (spectral smoothing) (A1.55) 

J. Calculus of Variations 

The calculus of variations problem with constant Lagrangian multipliers 

and integral constraints is formulated as follows: 

1) Given a definite integral 
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b 

H = J F(x,p(x))dx (Al.56) 
a 

the problem is to maximize H with respect to the function p(x) where 

p(x) has N constraints as given by: 

b 

J Qjç(x>P(x))<ix= ̂  k= 1, 2, 3, ... N. (A1.57) 
a 

The integrals must all be finite and the limits of integration are 

over all defined values of the independent variable, x. F(x,p(x)) and 

Qj^(x,p(x)) are explicit functions of x and p(x). p(x) is a function 

of X alone. 

2) Substitute for the function to be maximized (in this case p(x)) 

the following modified function ;Aich has N arbitrairy "perturbation" 

functions: 

P(x) »P(x) + Cĵ tTĵ (x) + e2T̂ (x) + ... ê T (̂x) (A1.58) 

^(x) - P(x) + (A1.59) 

This produces a function with p(x) and N additional degrees of freedom. 

3) Next, form the following auxiliary function 

N b 
w « H( e, 62, •••«!,) (A.1.60) 

«here Qj^-Qj^(p(x), ' %%)« 

4) w is minimized with respect to eack by evaluating the following 

derivatives at all 

â2 = 0 Uo 

Mall ê -0 '''all 
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= 0 

all e,= 0 
k 

(A1.61) 

This procedure will yield N equations that can be used to solve for 

N constraint constants. The partial derivatives can be expanded by 

noting that: 

^ ^ m 

ap* 

É. . (A1.62) 

All the partial derivatives become: 

i ^ 
all e^-0 

dx 

all e^= 0 

N 
+ S x_ 

m«l m 
I ^ 

30 
dx m 

all ®k"° all 0 

(A1.63) 

The partial derivatives for F, Q^, and are written as follows: 

iSL. |j-^(i,p(=t) + ejT,j+€2t,2-^— •nV_ 

all « = 0 
k all «,. = 0 

ap 

all ®k"° 

(A1.64) 

all e^= 0 
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- ^ 
op 

all e, = 0 
k 

all c = 0 
k 

% m 
ae, 

= 0 

(A1.65) 

(A1.66) 

The partial derivatives for w are reduced to: 

= I 
a ^ 

all 6^ = 0 

N 

*Â sp* 

all .^.0 

]dx = 0 (A1.67) 

all t^-O 

5) Since the integral of Equation is zero for any arbitrary "pertur

bation" function T^(x), only two possibilities exist. Either T^(x) = 0 

^Aiich is the trivial solution or else: 

N 20 
+ S, X 
— nïl m 

2p(%) 9p(x) 
all ®k"° 

(A1.68) 

all •k"° 

Equation A1.68 is called the Euler-Lagrange equation and may be 

written in an alternate way as: 

> A N A 
——-EF(X,P(X)) + S X Q (x,p(x))] 
3p(x) Œ-X 

= 0 

all " 0 
k 

(A1.69) 

The Euler-Lagrange equation will generally contain N Lagrange multi

pliers, the independent variable x, and the dependent variable p(x). 

6) The Euler-Lagrange equation is solved for p(x) in terms of the 

X *s and x. This solution will generally be very complicated and 

quite often transcendental. The explicit solution for p(x) will be 
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represented by V(x, ... . This solution is then substituted 

into the N constraint equations 

b 

J* jX2» ••• (Al.70) 
a 

and the N equations are solved for the N values of the Lagrangian 

multipliers. 

7) The solution is completed \riien these X^'s are used in the explicit 

equation for p(x) to give: 

p(x) — V(x,Xj^jX2» ••• X^) (A1.71) 

The calculus of variations problem with a continuous Lagrangian multi

plier function is formulated as follows: 

1) Given the definite integral 

b 

H - J F(x,p(x))dx (A1.72) 
a 

the constraints are now assumed to fozm a continuous function and the 

constraining equation becomes 

b 

J Q(T,x,p(x))dx»0(T) (A1.73) 
a 

where the continuous parameter T replaces the index k. 

2) Substitute for the function to be maximized, the following modified 

function which contains an arbitrary "perturbation" function TI(T,X) and 

an C(T) continuous multiplier that is independent of x. The modified 

function becomes: 

p(x) = p(z) + r c(T)Ti(T,x)dT (A1.74) 

all T 
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Note that the interval of T for 0(T) must be the same as that for 

e(T) and T](T,X) or there will not be enough "degrees of freedom" in 

the product c(T)'n(T,x). 

3) Next, form the following auxiliary function using p(x) : 

w = H(c,T) + r  X(T)  C r  Q(T,x,p)dx-0(T)]dT 
all T a 

(A1.75) 

4) Calculate the partial derivatives of w with respect to €(T) and 

evaluate this partial derivative at e(T)=0 to minimize the function 

w at the point p(x) =p(x). 

The partial derivatives are expanded as before: 

aw 
Be(T) 

e(T) = 0 

= ^ M— 

€( T) = 0 

(A1.76) 

ae(T) » 3e(T) I 
e(T) « 0 ^ e(T) = 0 

(A1.77) 

a«(T) 
e(T) = 0 

^ Se(T) 
e(T) = 0 

(A1.78) 

It is important to note that the partial derivative of p(x) with 

respect to e(T) can be reduced to a function of x alone as follows: 

sL-8.(T) I = +1 «(T)r,<T.x)dT] 

e(T)»0 e(T)=0 

I(Î) 
^ e(T) = 0 

r Tl(T,x)dT 
all T 

(A1.79) 
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The integral of TI(T,X) over T leaves a function of x alone, therefore: 

I = J •n(T,x)dT = K(x) (A1.80) 

With these various partial derivative expansions, the partial deriva

tive of w becomes: 

is 
3e(T) = I 

e(T)=0 
ae(T) ^ ± J I ̂ (t) 

e(T )=0 all T a 
ae(T) 

dxdT (A1.81) 

Combining the integrals and reducing gives : 

3«(T) 
e(T)=0 

= J K(x) C^j + J X(T) 
a ZNn » a1 1 T 

m dT]dx = 0 (A1.82) 

^e(T)=0 ^e(T)=0 

5) Since the integral is zero for every arbitrary "perturbation" 

function K(x), the only nontrivial solution is : 

3F(x.p(x)) 

3P(%) 
e(T)«0 

+ R MT) 
~ all T ap(i) 

dT = 0 (A1.83) 

€(T)=0 

Equation A1.83 is the Euler-Lagrange equation for a continuous con

straint function defined by an integral constraint. This equation 

will contain a continuous Lagrangian multiplier, X(T), the independent 

variable x, and the dependent variable, p(x). 

6) The Euler-Lagrange equation must be solved for p(x) in terms of 

the multiplier function X(T) and x. In general the solution will in

volve a transcendental equation in p(x). An explicit solution would be: 

p(x) » VJ^(X,X(T)) (A1.84) 
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7) This value of p(x) is then substituted into the constraint 

equation to give: 

b 

J Q(t,x,Vj^(x,\(T)))dx = #(T) (A1.85) 
a 

This integral equation must be solved to yield X(T) as some function 

of 0(T) represented by: 

X(T) = R.(0(T)) (A1.86) 
w 

Again this solution may be transcendental. 

8) The solution for p(x) to maximize H is completed \dien the solution 

for X(T) is used in Equation A1.84 to give: 

p(x) = V^(x,R^) (A1.87) 



www.manaraa.com

418 

XXII. APPENDIX II - FOURIER ANALYSIS 

A. Fourier Series - Equivalent Mathematical Forms 

A continuous function f(x) is periodic in x if it is defined for all 

real x and if 

f(x + nT) = f(x) (A2.1) 

\ 

where T is called the period of f(x) and n is any positive or negative 

integer including zero. 

The familiar Fourier series representation of f(x) is given as: 

f(x) = aQ+nl-j^Ca^cos X + b^sin x) (A2.2) 

The Fourier coefficients for (A2.2) are confuted by the following integrals: 

1 
% " X (A2.3) 

+T/2 
a„ = I r f(x) cosfSga (A2.4) 
° ^ -T/2 ^ 

? +T/2 . 
b = =: r f(x) sin(-=- x)dx (A2.5) 
° ^ .T/2 ^ 

The complex representation of a Fourier series is obtained by using 

Euler's equation, e^°^ = cos or + j sin or, to replace the sin and cos terms of 

(A2.2). When this is done, the series can be written as: 

" +j^ t 
FW = + K,E ] <A2.6) 
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The complex coefficients are related to the a's and b's as follows: 

k l  = 7  
2 " n n' 

(A2.7) 

1 
k* = 2 (*n- j V ^n = (-f) 

n 

The complex series representation is most often seen in the following 

compact form 

^ +j^x 

f(=) =n=-œ V (A2.8) 

1  - J  — X  
c = r J f(x)e dx (A2.9) 
° ^ -T/2 

* with c = c . 
-n n 

Another common representation of the Fourier series is the phase angle 

representation. This representation is obtained from Equation A2.2 by 

using the substitutions a = d cos A and b = -d sin A • After several 
n n *n n n n 

trignosietric manipulations we obtain: 

œ 

f(x) = a^ d^cos + (A2.10) 

The values for d^, and are computed from the a's and b's as follows: 

(A2.11) 
—b 

0^ = Arctan(-^ 

n 

The relationships between the conçlex representations and the phase 

angle representations are summarized below: 
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* * 1 (A2.12) 

kn) k. = 2<*n+i'\r» 

W *n ' =0-»=.* 

, (A2.13) 

i('=n-':.n) ^-n= 

|c I = -^(a^ + b^)^ 0 = Arctan(——) 
' n ' 2 n n n a 

n 
(A2.14) 

c) a = d cos 0 d = (a^ + b^)^ 
n n n n n n 

b = -d sind A = Arc tan ( ) 
n n n a 

n 

=n = 2 = 2|:nl 

1 ImCc } 

'-n = 2 <n= ' ®n = 

-b^ (A2.15) 

(A2.16) 

Each representation of the Fourier series has its useful applications. 

Quite often the phase angle representation is used in discussions of net

work theory and wave propagation. For data analysis, the compact complex 

representation is used because it is identical to the digital Fourier trans

form and also because it is notationally convenient. 

6. Fourier Series - Discrete Independent Variable 

An infinite periodic time series can be represented by a digital 

Fourier series. Using the compact cong)lex representation and assuming 

equally spaced x-values we get: 
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4M +j 

=n=5, V / ("•") 

There are only (2M+ 1) values of because for a finite number of values 

of f(x) in the Fourier period, T, only a finite number of complex ampli

tudes can be uniquely specified. This result points out the important fact 

that a digital Fourier series must, of necessity, be spectrally limited. 

The complex amplitudes can be exactly specified by the following digital 

routine vrfiich is obtained by using a Riemann sum approximation for the 

integral of (A2.9): 

AX ^ -j^nkAx 
=n (A2.18) 

Equations A2.17 and A2.18 form a digital Fourier transform pair if the in

crement Û3C is such that ̂  = T/(2M+1). The c^' s calculated from (A2.18) 

can then be used in (A2.17) to reproduce the exact f(kûx)-values. 

C. Fourier Transform Pair 

The Fourier series can be used to derive the Fourier integral and 

Fourier transform. If a Fourier integral is to exist for an arbitrary 

function f(x) (not necessarily periodic) the function must be piecewise 

continuous on every finite interval (Riemann integrability), it must have 

a finite average value, and It must be absolutely integrable (sufficient 

but not necessary). 

The Fourier integral may be written as 

1 ® 
f(x) = — J [A(w) cos wx + B(w) sinwxjdw (A2.19) 
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where: 

-k» 

A(w) « r f(u) coswudu (A2.20) 
-GO 

-fco 

B(w) " J f(u) sinwudu (A2.21) 
•00 

The Fourier transform Is the complex representation of the Fourier Integral. 

Using Euler's equation, the Fourier Integral becomes 

f(x) .r f(u)e'^^du + e"*"^[ f(u)e ^*^du]dw (A2.22) 
0 —CD —CD 

which can be reduced to: 

F(=) "IZ J f(u)e"^^du]dw (A2.23) 
•CD 

Equation A2.23 Is used to define the Fourier transform pair; 

'2?? J* (A2.24) 

-Ko _. 

F(w) - f f(x)e'J"*dx (A2.25) 

Many functions that appear In physics and mathematics are formulated 

In terms of the Fourier transform and thus are associated with Fourier 

transform pairs. Two common examples are: 1) position and momentum In 

quantum mechanics and 2) autocorrelation and power spectral density In 

signal processing. The autocorrelation function, R(T) of a random process 

and the power spectral density function, S((u)j of that process form a 

Fourier transform pair: 

+=> 

S((IJ) » f R(T)c'J""'dT (A2.26) 
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, +® , . 
R(T)- S(u))e ^"^dcu (A2.27) 

An alternate mathematical form that is often seen is obtained by substi

tuting Z-rrf = uu to give : 

P(f) =J R(T)e'^^"^V (A2.28) 
-CO 

R(T) P(f)E'^^^"^'^DF (A2.29) 

D. Digital Fourier Transform 

The digital (discrete) Fourier transform is obtained by using a 

Riemann sum approximation for the integral of Equation (A2.24): 

f(kAx) = ~ AW Z F(nAw)e"*"^°^*^* (A2.30) 
n»-N 

The spectral amplitudes are obtained from the sample values of f(kAx) by 

the Riemann sum: 

F(nAw) - AX Z f (kAx)e~^°^*^^ (A2.31) 

Other mathematical forms of these equations are often used to develop the 

theory and practical application of digital Fourier transforms. 

E. Special Functions 

There are several special functions which occur repeatedly in the 

mathematics associated with Fourier analysis. Three of the most isçortant 

are the Kronecker delta, the Dirac delta and the sine function. The fol-
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losing tabulations of the various forms of these three functions are in

cluded because they have proved to be valuable for use in a variety of 

derivations. 

The Kronecker delta plays an important part in Einstein susmation 

notation and in the formulation of digital Fourier analysis. The Kronecker 

delta is defined as follows: 

1 1 k = n k,n are integers 

Some of the various mathematical forms for the Kronecker delta function 

are: 

, -Kr/2 +j %(k.n)x 

T ^ ^ (A2.3.4) 
-T/2 

«kn'fcj e"^J®^"°^de (T«2n) 
-TT 

7 +T/2 , 

®Wn ' T J kt) COS (— nt)dt 
Kn i _T/2 ^ ^ 

^kn p.5M2M + 1® 

(A2.35) 

(A2.36) 

(A2.37) 

This last form was discovered in the derivation of the spectral mfving for-

mi la and can also be written alternately as: 

«k. - <âiTÏ)Cl ^(k - n)p] (i2.38) 
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The validity of this equation was shown using a double precision computer 

program. The magnitude of the indexes was shown to be restricted to the 

ranges; Oik^M, OiniM. 

The Dlrac delta function (or impulse function) plays the same type of 

mathematical role in continuous functions as the Kronecker delta does in 

discrete functions. The Dlrac delta is defined as follows: 

œ X =y 

6(x-y)=^ (A2.39) 
0 otherwise 

J 6(x-y)dx = l (A2.40) 

all X 

J f(x)5 (x - y)dx = f (y) (A2.41) 

all X 

Equation A2.41 is the sifting (or sasçling) property of the Dlrac delta. 

The Dlrac delta function also has the following Integral definition 

(Cauchy principle value): 

6(x-y)- J e+j2TT(x-y)Xj^ (A2.42) 

—00 

The Dlrac delta can also be represented in the following mathematical forms: 

S(,-y). (A2.43) 

6(x-y)» lim Te"^ <A2.44) 
T-*oo 

6(x±y)- W.45) 
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For conceptual purposes, the Dirac delta is often represented by a rectan

gle function of height T, width 1/T, and unity area: 

6 (x - y) » lim T rect[T(x - y) } (A2.4&) 
T-»oo 

The sine function appears in most discussions of Fourier analysis and 

sampling theory. It is the Fourier transform of a rectangle function and 

can be used to approximate a Dirac delta function. The normalized sine 

function is defined as 

sinc(x) = (A2.47) 

and has the following integral definitions: 

+C0 
n sin TTX , 

•1 

alnmr / Tt/2 m>0 
r dx »< 0 m«0 (A2.48) 
O * (jTr/2 m<0 

Â more generalized form of the sine function can be written as: 

[sinCco - U) )TJl 

Figure A2-1 show a plot of the generalized sine function. The peak anq>li-

tude of AT occurs at u)" m . The zeros of the sine function occur at 
m o 

u) " m + n n" 1, 2, 3 ... and the bandwidth between first nulls is 

BWFN - 2n/T. 
m 
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AT 
m 

(IL + ̂  

eu + ̂  

Figure A2-1. A Generalized Sine Function 

The sine function has the following useful mathematical properties: 

1 sin(u)- œ^)T . . 

^ J ̂ ^m ^ (w- W )T = 2 (^'50) 
—CD O SI 

sin((i3- U) )T 

(0)- m )T = "A 6(U)- u^) (A2.51) 
® o m 
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XXIII. APPENDIX III -

A. PROGRAM 01 

B. PROGRAM 02 

C. PROGRAM 03 

D. PROGRAM 04 

E. PROGRAM 05 

F. PROGRAM 06 

G. PROGRAM 07 

COMPUTER ALGORITHtB 

- Discrete Fourier Transform Testing 429 

- Estimated Kronecker Delta Function 435 

- Estimated Spectral Asçlltudes using 

Kronecker Delta 439 

- Discrete Fourier Transform Analysis 441 

- Fast Fourier Transform Spectral Density 453 

- Estimation of SIngle-SInewave Parameters 460 

- Maximum Entropy Spectral Analysis 466 
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tjce 'kUSSLcL*,TlKc=^0,PACLS=7 5 
c 
c FPCGPAV 0 1 

c DISCRETE FCUPIER TSANSFUPM TESTING 
c 
C THIS PfiCOftAM IS I'SLL TC ANALYZE THE EFFECT CF 
C VARIOUS SAMPLING CONCITICNS CN ThF CISCkETE FùUPlEP 
C TPANSFOPK FSTIKATE CF ThF SPECTPOV CF A TIME SchlES. 
C THE INPUT TIME SERIES IS CicNEKATED IN THE PKCGPAV. 
C 

1 OIMFNSÎCN FVALLF (201 ) ,FX(804> ,A(400) .D<^00 ) 
^ DG t> 1 = 1$ 400 
3 A( I ) =C.O 
4 5 fi(I) = 0.0 

C 
C INPUT DATA VALUES 
C 

5 4(1)=4.0 
6 B( 3)=1.0 

C 
7 TF = l .0 
e TN=3.1 
Q N3=2l 

I 0 FNS = NS 
II T0'EL=TN/FN« 
12 SCALc=2.0 

C 
13 NLS=NS 
14 KMAX=(NS-L)/2 
15 ocv=o«o 

C 
C SENEQATE CAT A VALUES. SOLATION( 1 20.1) 

16 CALL FSRS(FX,A,F.CCV.HS.TDEL,TF) 
17 PPINT g 
le 9 FCKMAT( ' 1* .IIX.'K* ,7X,'TII'E',13X.'F(TIKE)'/) 
15 DO 10 I=1.NS 
20 FVAL'JE ( I )=FXt I ) 
21 II=I-NMAX-1 
22 X3=LTA=II*TCEL 
23 10 PP INT. I I tXCELTA.FX { I ) 

C 
C COM^UTH COMPLEX FCORIEF AMPLITUDES, £ QUATION< 12D#t>) 

24 CALL LN=PTV(FVALLE .A ,fc .NLS.CCV> 
25 PP INT 34 
26 34 F0PV4T(•1••'N*•2X,«CC-VALUE".4X,«CMAG*.ex 

1 .'CPSASE•.ex,*FPEC-H2' .7X.'CYAC-CB'/) 
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27 KLWAX=(NLS-l)/2 
28 DO 35 1=1,hLVAX 
29 Xl=I 
30 CWAG= ((A{I)*A(I)+£:(I)»e(I))»*C.5)/5. 
31 C.v=CW AG/SCALE 
32 CM4GCb=Z0.=»Al.0Gl C( CV ) 
33 ATcST=e(I)/A(I) 
34 AT£ST=ATEST*AT£ST 
35 AT?£T=ATEST»*0.5 
36 AT=1000«-ATEST 
37 AT) 20,20.21 

38 20 CPHASE=«3859383? 
39 GO TO 22 
40 21 CONTINUE 
41 6A=-8(I )/A(I ) 
42 CPH-ASE = ATAN( BA ) 
43 CPHAS£=CFHASe*57 ,2^577 
44 FNLS=NLS 
45 22 FPEO=XI/(TCk:L'$FNLS ) 
46 35 o^lNT 36. I ,DC V ,C VAG .CPHASE C#C« AGCH 
$7 36 FURMAT(16.4E12.3,F10.2) 

C 
C COMPUTE The FS7IVATEC TIk& S&KlES, ECUATICN(1^0.6) 
C 

4P Ni=4«N5-3 
4Ç TDEL=TDEL/4 
50 N«AX=(NS-l )/'2 
51 TF=TN 
62 CALL F5PS(FX,A,e .OCV.NS.TCEL.TF) 
53 P< INT 90 
54 90 FCPVAT ( » 1 • .1 IX , • K • .7X, •Tlf'E' . 1 IX 

1 . 'S&TI IVATEC F(TIVE)'/) 
55 nc 100 1=1.NS 
56 II=I-hWAX-l 
5 7 XD=LTA=I I* TDEL 
58 100 PPINT. II.XCELTA, FX( I ) 
59 501 ST?P 
60 t.MD 

C LINE SPcCTP.OM SUBP0UTIN3 
C 
C THIS 5L3R0L;TI.\C GE^E^^ATES THti FCUFIEP CCcFF ICI&NTS 
C A AND e FCP NLS SAMPLES OF THE FUNCTION. FvALUt. 
C 

61 SLrJft3LTlNfc LNSP T v( F V A LLt . A . b . NLS . C C V ) 
62 CIWENSICN FVALJfc (201 ).A(400).6(400 ) 
63 NLMAX=(NLS-1)/2 
64 PI=3.1415926 
65 XNN=\LS 
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6 6 V— 0 # 
67 CO 15 J=1»NCS 
68 15 CCV=C:CV+FVALUc ( J ) 
69 OCV=DCV/XNN 
70 DC 16 J=l,\LS 
71 16 FVALUE{J)=FVALUe iJ )-CCV 
72 03 10 N=1#\LWAX 
73 AS-JM = 0. 
74 BSUM=0. 
7 5 XN=N 
76 CC 5 J=1.NLS 
77 JJ=J-NL*'AX-1 
78 XJJ=JJ 
79 ACS=2.0»PI»XN*XJJ/XNN 
S C  A£UM = CCS(APGl*FVAH - e  ( J j+ASOV 
cSl 5 BSUN: = SIN(A.-ÎG)*FVALLtf ( J>+'3SC*' 
82 A(N)=2.0*ASUM/XNN 
63 10 3( N) =2.0».^ SLM/XNN 
64 30 17 J = 1.NL.S 
as 17 FVALUE(J)=FVALUE(J)+CCV 
at q^TUiiN 
87 END 

C fCCPIcfi SERIES SUEPCUTINE 
C 
C THIS àCePOUTINc GENERATES SAMPLES OF THE DATA 
C FUNCTICN. r x i l i ,  LSING THE FCURIEP COEFFICIENTS, 
C A(I), 8(1), ANO DG-VALUE, DCV, AND THE NUMBER OF 
C DESIRED SAMPLES, NS« TOEL IS Tl-E SAMPLING P£r?IOD 
C AND Tr IS THE FCUPIER PERICC. 
C 

es SL3RCUTINfc FSfiS{FX ,A,E,CCV,SS,TDEL,TF> 
89 DIMENSION FX(604),A(400) .8C400) 
Ç0 NMAX={NS-1)/2 
91 PI=3.1415926 
92 XN5=NS 
93 DC 10 1=1,NS 
94 K=I-NMAX-1 
Q5 X<=K 
96 PXK=0. 
Ç7 DO 5 N=1,NkAX 
98 XN=N 
i9 AAG=(2.0*FI*XN«XK*TCEL)/TF 

100 5 FXK=FXK+A(N)#CUS(ARG)+b(N)*SIN(A{;&) 
101 10 FX(I)= FXK + CCV 
102 PETLkN 
103 END 

SENTRY 
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4 0 •  14761iCfc 

t U .1&4&23EC 

6 0 .22142856 

7 0 .2593333E 

e  0 .24523806 

9 0 .3321426fc 

10 0 .36904752 

11 0 .40595232 

12 0 .4428570E 

1 J  Û.4797618E 

14 0 «5166665E 

1£ 0.5535713E 

16 0 ,5<;C47oOL 

17 0 .6273808 E 

16 0 . 6 6 4 2 e 5 5 E  
19 0 .7011903E 

20 0 • 7 3 e 0 9 5 0 È  
21 0 .77499985 

22 0 .6  11 9045E 

23 0  .64980932 

24 0 .«8571416 

25 0 .9226188E 

26 0 .9595236E 

2 7  0 .99642832 

28 0 .103^333E 

2 9  0 « 10702372 

30 0  .1  107142E 

31 0  •11440472 

3 2  0 .  11809522 

33 0  - 1 2 l 7 e 5 6 E  
34 0 .1254761E 

3 5  0 .12916662 

36 0 .1326570f  

37 0  .13654762 

38 0  . 1 4 0 2 3 8 0 2  
39 0 .  1439265F 

40 0 -  14761902 

C.  2750656F 01 

0 .  11221 OIE 01 

— 0  « 339209 32 00 

-0 .  1335740=:  0  1  

— c .  1779624E 01 

— 0  .  185558 lE C 1  

— 0  .  189el2eE 01 

— c .  219fc2e£F C 1  

—G .  26643242 0 1  

— c .  3742486? 01 

— 0  .  4497952E 0 1  

— 0  .  4773554F 01 

— 0  .  4361814F Cl  

— 0  .  230407 12 C 1  

— 0  .  lè7120PE 01 
-c .  4393817E ou 

0 .  6 759574E ou 

c .  13470732 C 1  

0 .  1664277E 0 l  

0 .  18611632 0 1  

c .  2 l?77CCr Cl  

0  •  27308442 01 

0 .  34543212 01 

c .  41312222 Cl  

0 .  4500347r  0  1 

c .  43722591 01 

c .  37 14C52E C 1  

0 .  26530522 0 1 

0 .  14Î5442F 01 

Q.23 leoeec CC 

— 0  # 74356622 00 

- c .  14665402 0 1  

—0 .  1985 loef  C 1  

— 0  •  23294322 Cl  

— c .  272995CC Cl  

-0 .  31375552 01 

- c .  35213742 01 

434 
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0 1 
0 1  
0 1 
01 
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0 1  
0 1  
Cl 

01 
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0 1 
0 1  
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5 
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7 
c 

V 
l i 

1 1 

12 

1 3 
14 
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1 7 
1 S 
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2C 
2 1  
2 2  

23 
24 
25 
2 6  

27 
2 6  
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iJûa 'kUSâlLL 3•#TIM£=1O,PAGfcS=50 
C 
C PF.OGr.A Y Z2 

C 
1 CSTIMATLID MF JNcCKcP ucLTA FUNCTI uN 
r 

Z THIS MJUTINL LVALUAT^S T hL. APFrî CXI MAT UN TT THV. 
C KPJNcCKcP JcLTA FUNCTION. DOUBLÉ PPi-CISIÛN IS USED 
C TC AcSCLVc THd c-XACT VALUcS OF THc. Jrr-DIAGONAL 
C ELEMENTS» 
C 

»E.AL»é Th£TA ,AMAT,rzLr0M$['\N,OO,iw,TF,TN,uK,PI,DC3S 
INTcocF J,f 

C 
C INPUT DATA 

N=b 
M= 5 
TN=1, 
TF = l . 

NN=2•N+I 
ÛNN=NN 
MM=2»W+1 
PI=3.1415926535897 

C 
PRINT 5 5 

d5 FUPMATC • 1» »5X . • Q* .7X . • • »7X. ' JccTOR' . 16X, • DtLTOF •/ ) 
DC er 1 = 1.NN 
U=I—N—1 
UCl =Q 

Cù 80 L=1»MM 
H=L-M-1 
DR=R 
AMAT=Q»0 
CC 50 K=1.N 
CK.=K 
THLTA=2«»f=I»DK*TN» ( OQ/TN-OF/TF )/PNN 

ÔO AMAT=DCÛ£(TH£TA)+AMAT 
Cc.LTUR= (1»+2.»AMAT )/DNN 

eo PRINT e l.Q .ft «CELTQK.C^ ltjs 
61 FORMAT(16.16.F10.5.C26.16) 

STCP 
cND 

SENTRY 
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Q R CELT CR 

-5 -5 1.00000 
-5 -4  0.00000 
-5 -3  -0.00000 
-s -2  0.00000 
-5 -1 -0.0 0000 
-5 0 0*00000 
-5 1 -0 .00000 
-5 2 0.00000 
-5 3 -0.00000 
-5 4 0.00000 
-5 5 -0.00000 
—4 -5 0.00000 
-4  -4  1.00000 
-4  -3  0* 00000 
—4 -2  -0 .00000 
— 4  -1 0.00000 
—4 0 -0.00000 
—4 1 0.00000 
-4  2 -0*00000 
-4  3  0.ooooo 
-4  4 -0.00000 
-4  5 0.00000 
-3  -5 -0.00000 

-3  -4 0.ooooo 
-3  -3  1.00000 
-3  -2 0*00000 
-3  -1 -0*00000 
-3  0 0.00000 
— 3  1 -0*ooooo 
-3  2 0*00000 
-3  3 -0.00000 
-3  4 0*00000 
-3  5 —0 *00000 
-2  -5  0.00000 
-2  — 4  -0*ooooo 
-2  -3  0*00000 
-2  -2  1*00000 
-2  -1 0 *00000 
-2  0 -0 *00000 
-2  1 0* ooooo 
-2  2 -0*00000 
-2  3  0* ooooo 
-2  4 -0*ooooo 
-2  5 0 *00000 
-1 -5 -0*00000 
-1 -4  0*00000 
-1 -3  -0*00000 

DELTQR 

0 .  10000000000000000 01 

0 .30 246007716594890-13 

-0.31389032787129430-13 

0.33723024 372989130-13 

-0.37404422993280280-13 

0.43215431233534220-13 

-0  .51897879932932320-13 

0«66156676096924960-13 

-O.90271224838612720-13 

0 .  1430 4214378636390-12 

-0.30301014222996770-12 

0.30246007718594890-13 

0.10000000000000000 01 

0.30246007718594890-13 

-0.31389032787129430-13 

0.33723024372989130-13 

-0.37404422993280280-13 

0.43215431233534220-13 

-0.51897879932932320-13 

0.66156676096924960-13 

-0.90271224838612720-13 

0 .  1430 4214378636390-12 

-0.313890 32787129430-13 

0 .  302460 07718594890-13 

0.10000000000000000 01 

0.30246007718594890-13 

-0.31369032787129430-13 

0.33722024372989130-13 

-0.3740442299328028D-13 

0.432154 31233534220-13 

-0.51897879932932320-13 

0*66156676096924960-13 

-0.90271224838612720-13 

0.33723024372989130-13 

-0.3138903278712943D-13 

0.30246007718594890-13 

0.10000000000000000 01 
0.30246007718594890-13 

-0.3138903278712943D-13 

0.33723024372989130-13 

-0.37404422993280280-13 

0.43215431233534220-13 

-0.51897879932932320-13 

0.66156676096924960-13 

-O.37404422993280280-13 

0.33723024372989130-13 

-0.31389032787129430-13 
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-2 0*00000 0.3024600771859489D-13 
-1 1«00000 0.lOOOOOOOOOOOOOOOD 01 

0 0*00000 0.3024600771859489 D-13 
1 -0* ooooo -0*31389032 787129430-13 
2 0.00000 0 * 3372302437298913D-13 
3 -0# ooooo -0.37404422993280280-13 
4 0«00000 0.43215431233534220-13 
5 -0*00000 -0.51897679932932320-13 

0 -5 0*00000 0*43215431233534220-13 
0 —4 -0*00000 -0*37404422993280280-13 
0 -3 0* ooooo 0. 33 72 3024372989130-13 
0 -2 -0.00000 -0.31389032787129430-13 
0 -1 0#ooooo 0. 3024600771 3594890-13 
0 0 1*00000 0.10000000000000COD 01 
0 1 0*00000 0 . 3024600771 8594890-13 
0 2 -0.  ooooo -0.31389032787129430-13 
0 3  0 *00000 0.33723024372989130-13 
0 4 -0* ooooo -0 e 37404422993280280-13 
0 5  0*00000 0.43215431233534220-13 

1 -5  -O *00000 -0.51897879932932320-13 
1 -4  0* ooooo 0*43215431233534220-13 
I -3  -0 *00000 -0.37404422993280280-13 
1 -2 o.ooooo 0.33723024372989130-13 
t -I -0* ooooo -0.31389032787129430-13 
1 0 0.00000 0.30246007718594890-13 
1 1 1 * ooooo 0.lOOOOOOOOOOOOOOOD 01 
1 2 0*00000 0*30246007718594890-13 
1 3 -0.00000 -0.31389032787129430-13 
Î 4 0* ooooo 0.33723024372989130-13 
1 5 -0 .00000 -0.3740442299328028D-13 
2 -5 0*00000 0.66156676096924 96 0-13 
2 -4  -o«ooooo -n*51897879932932320-13 
2 -3  0 *00000 0.43215431233534220-13 
2 -2 -0* ooooo -0.37404422993280 280-13 
2 -1 0 *00000 0.33723024372989130-13 
2 0 -0 *00000 -0.31389032787129430-13 
2 1 0# ooooo 0.30246007718594890-13 
2 2 1*00000 0. lOOOOOOOOOOOOOOOD 01 

2 3 0*ooooo 0.3024600771859489 0-13 
2 4 -o.ooooo -0.31389032787129430-13 
2 5 0.00000 0.337230 24372989130-13 
3 -5 -0.00000 -0.90271224838612720-13 
3 -4 0.00000 0.66156676096924960-13 
3 -3 —o.ooooo -0.51897879932932320-13 
3 -2  0#ooooo 0.43215431233534220-13 

3  -1 -o.ooooo -0 .37404422993280280-13 

3  0 0.00000 0.33723024372989130-13 

3  1 —0*ooooo -0. 31389032787129430-13 
3 2 o.ooooo 0.30246007718594890-13 
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3 3  1 .00000 

3  4 0.00000 

3  5 -0 .00000 

4 -5  0.00000 

4 -4  -0  .00000 

4 -3  0 .  00000 

4 -2  -o .ooooo 

4 -1  0 .00000 

4 O —0.00000 

4 1 0  .00000 

4 2  -0 .00000 

4 3 0.00000 

4 4  1.00000 

4 5  0.00000 

5 -5  -0 .  00000 

5 -4 0.00000 

5 -3  -0 .  00000 

5 -2  0.00000 

5 - I  -0 .00000 

5 0 0 .00000 

5 1 -0 .00000 

5 2 0.00000 
5 3 -0 .00000 

5 4 0.00000 

5 5  1.00000 

O.lOOOOOOOOOOOOOOOO 01 

0.30246007718594890-13 

-0.313890 32787129 430-  13 

0.14304214378636390-12 

0 .90 271224838612720-13 

0.66156676096924960-13 

0.51897879932932320-13 

0.43215431233534220-13 

-0.  37404422993280280-13 

0.33723024372989130-13 

-0.31389032787129430-  13 

0.3024600771859489 0-13 

0. lOOOOOOOOOOOOOOOO 01 

0.3024600771859489 0-13 

0.30301014222996770-12 

0.1430 4214378636390-12 

0.90271224838612720-13 

0.66156676096924960-13 

0.5189787993293232D-13 

0.43215431233534220-13 

0.37404422993280280-13 

0.33723024372989 130-13 
0.31389032787129430-13 

0•3024600771859489 O-13 

0»lOOOOOOOOOOOOOOOO 01 

SSTOP 
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1 
2 
3 

4 
5 

7 

9 
IC 
1 1 

î  ̂  

1 3 

l-i 
1 b 
1 6 
I  7  

16 

1 i 
2C 
2 1  
22 

^ 3 
24 
25 

2fc 

27 
2 9 
29 

3C 

31 
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fcJCB 'RUSSI^LL'  tTIMti=30.PAGc.  = =75 

C 
C PSOGKAM C3 

C 

C ESTIMATtC.  SPECTRAL AMPLITUDES USING KFcNcCKiiR D&LT»; 

C 

C THIS R JUTINL EVALUATilS T KCL APPPL .XI  MATI ON TO THt 

C KPCNECKLk DLLTA FUNCTICN AND USc3 IT TJ CALCULATE 

C THvi ESTIMATcD AMPLITUDc S WHEN THtu -cAL AMPLITUDES 

C A?E SP_CIFIcO.  DCUHL£ PALIISIUN IS UScD TO PK^LLV^ 

C THE EXACT VALUES OF THE CFF-01 AGONAL LLEMFNTS. 

C 

Kt_AL-a TH^TA . AMAT, i>_LTC-. L;NN.  Di i .  D?-  tTF» TN .OK #P I .OCOS 

REAL'S CTPU£(400 ) .CoUV .CMPLX(4f.O ) 
iNTEGtf  Q.F.  

C 

DO 5  1=1,400 

5  CTru£(I)=Û.O 

C 
C INPUT DATA 
c 

N=10 
M=3 

TN=3.L 
TF=1«C 
CTPUE(5 >-2.OC 

CTnUE(7)=0«3âC 

CTKUE(3)=CTfiUt(5)  

CTkum )=CTRU£(7)  

C 
NN=2 «N+1 
ONN=NN 
MK=2»M+1 
P1=3.1415326535897 

C 

PRINT e5 

ho FCKMATCl '  .5X.*Q',7X,«C(Q)*,16X,*C(C!) ' . / )  

DJ  9C 1=1.NN 
G=I-N-1 
DQ=Q 

C 
CSUK=C»0 

CC 8C L=1.MM 

»î=L-M-l  

DK=F.  

C 
AMAT=r«C 
CO 5C K=l ,N 
DK=K 

TH£.TA=2»«i-I*JK»TN- (  D G/  T N-DR/TF )  /C N,\  

50 AMAT=DC0S(TH£TA)•AMAT 
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Tl m 7 
r c 
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I 
2 
3 
4 
c 

6 
7 

e 
<; 

1 0 
11 
12 

1 2  
14 

15 

16 
17 

16 
1 9 

20 

2 1  

2 2 
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iJCb 'RLSSELL' .TIkE=3C.FAGES=75 
C 
C FM0 3F AM 04 
C 
C DISCRETE FCLk ILP TKANSFCRM ANALYSIS 
r-

C THIS FRCGPAV CAN EE LSCC TC GENEPAT= A CIGITAL 

C FOUR ICR TRANSFORM FRCV TIME SERIc£ Cf TA.  IT WILL 

C ALSO CC A FIPST-GKCEP LINEAR KtGRESSION ANALYSIS 

C ON THE INPLT DATA TC PEKCVE THE CC-VALUE ANC ANY 

C t_ INEAP TRENT. THE r .STIMATEO FOUPIET COEFFICIENTS 

C A Pc.  THEN USED TC CG^PUTC AN ESTIMATCC TIME SEKICS.  

C 

CI  /ENSION FVAHJE(2C1 ) .FSAV£( 20 1)  .FX tû4)  ,AC400) 

DI vc NSICN C.VAGN(40 0)  .  CPh AS N (  400 ) .  F (4 00 )  .  YF( 20 1  )  

00 2 1=1.400 

A( I  )  = 0  .0  

2 6(1)=0.0 

C 

C INPUT- CATA VALUES 

C 
LINR'£G = 1  

NS=4  1 
TDj:L=60.  

TF = 1  .  0 

FNS=NS 

TN=FNS*TDfc L 

SCALE=S2-Ô 

C 
,  NLS=NS 

NVAX=tNS-l) /2  

ccv=o io 
c 
c REAJ OATA CARDS AND PRINT DATA VALUES 

c 
PC »D(5.3)(FVALLc(I) .1  = 1 .NS) 

2 FJRMAT<10X.F14.2) 
P R I N T  6  

6 FORMAT (  ,  IIX. 'K'  .7X.«TI>»E' . l3X.*F(TIME)»/> 

DC 10 1=1.NS 

XDELTA=1*TCEL 

10 PPINT.I  .XDtLTA.F VALUF(I)  

C 

C OC A FIRST-CPCEP LINEAR RcGRESSICN ANALYSIS TC 

C REMOVE THE CC-VALLE AND ANY LINEAR TRENC. 

C IF «.IN»SFG=0.  Tt-£ LINEAR REGRESSION IS SKIPPED. 

C aZERC I  S THE Y-INTERCEFT, El  IS THE SLCFE. ANC YBAR 

C IS THE AVERAGE OF TME DATA VALLES. 

C 
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23 IFCUlNt^ES) ?e.2e. 17 
2 4  1 7  < Ç ; ; M  =  O  
25 KSUM2=J 

26 YKSUM=0.0 
27 YS'JM = 0.0 
26 ÛC 19 K = 1 .N5 

29 <SLM=KSL*+K 
30 KS JM2=<SO*'2+(K»»£ ) 
J1 YKSUV = YKSUN«-K»FVALtE(K ) 
32 19 YSUM = YSLM+FVALLe(K) 
33 xrAf=(TCEL*KSUW)/FNS , 
34 YBAA=YSUM/F\S 

35 XSJM2=(TCtL»»?)*K .5LM2 

36 XYSU%=JDEL#YK&LM 
37 31 = ( XYSLM-xeAR*YWAK*FNE)/( XSUK2-FKS* (XEAP**2) ) 
36 EZEK3=YEAP-CL*XEAP 
39 PFINT 25 
40 25 FOPMAT{ •1• , lOX, «ezERC • . lOX, «fc I • .14X,•YBAF •/) 
41 PFINTtEZcPC.ei tYFAP 
4 2  O D  2 7  < = 1 , N £  

4 3  Y F  ( < )  =  f c 2 E P C  +  ei » K  • T C f c L  

44 F Î.AVE(<)=FVALLE(Ki 
4 5  2 7  FVALUE( K ) = F V A L L E ( K ) - Y F ( K )  

C 
C THE TIME SEKIES HAS NCTT BEEN CCRPECTEC PCR ANY 
C LINEAR TREND AND THE DC-VALCE HAS BEEN SENOVEC. 
C THE MCCIFIEC TIVF SERIES IS NO* PRINTED. 
C 

46 26 CGNT IN'JE 

4  7  F A I N T  2 9  

4 8  2  i f  F û K y A T ( ' l ' , l l X , ' K ' , 7 % , * T I M 5 ' , 1 3 X , ' F ( T I V E ) ' / )  

45 DC- 30 1=1.  NS 

50 II=I-NVAX-l 
51 XL1LTA = II*T0EL 
52 30 PFINT,I I.XCELTA,FVALUE{ I ) 

C 
C COMPUTE COMPLEX FCLSIER AVFLITLOPS. E CU AT I CN ( 12 C. 5 > 
C 

53 CALL LNSFTV(FVALLE,A .E.NLS.CCV ) 
5 4  P P I N T  3 4  

5 5  3 4  F C S M A T ( • I • . 4 X ,  « N •  , 2 X , « C C - V A L U E  • . 5 X , ' C M A G  • ,  l O X  

1,•CPHASE»•EX,•FPFEG-H2*,3X.'CMAG-CE'/) 
56 Nl_MAX=(NLS-l  ) /2  

57 DC 35 1=1, NLO'AX 
se x i = i  

59 CMAG=((A(I) » A {I)+d(I)»e(I) ) » » C.5)/2. 
60 c»«-=c MAG/SCALE 
61 CMAGDEI = 20.*ALCG10(CF ) 
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62  

6 3  
6 4 
6 5  

66 
67 
6 3  
69 
7 0  

7  1  
7 i =  

7 3  

7 4  

7 5  

7 o  
7 7  

7  9  

79 

80 

Q1 
82 
6 3  
44 

8 5  

ee 
8 7  

sa 
es 

9 1  

92 
9  3  

94 
9 5  

443 

A T E S T = e (I)/A(I) 

A T £ S T  =  A T f c S T # A T c S T  
A T E S T = A T e S T « * 0 . 5  

4 T = 1 0 0 0 . - A T c S T  

I F ( A - )  2 0 , 2 0 . 2 1  
20 CPHASE=.a86eeeee 

G O  T J  2 2  

2 1  C C N T I N o c  
6 A = - 4 (  I  ) / A ( I  )  

C P H A s e  =  A T A N { Ê A  )  
C P H A  3 E = C = > H A ? S * 5 7 . 2 9 5 7 7  

r N L S = N L S  

2 2  A R C Q = X I / ( T C E L * F N L 5 )  
C M A i S N  (  I  >  = c y A a  

C F H A S N  {  I  ) =  C P t - A S K  

3 5  P P I N T  J 6 .  I  . C C  V . C V A G  , C F « - A S £  t F P f  G . C ^ A G T R  
3 6  F O R M A T ( I  6 . 4 6  1 2 , 3  . F  I Ô . 2  )  

C  

C  T H F  T G T A L  P C k E F  I N  T H E  S I G N A L  I S  N C *  C E T E P M I N E D  e v  

C  5 U K M I N G  T H E  S Q C A P E S  O F  T H E  C C V P u C X  A M P L I T U D E S .  T H E  

C  C C K C L E X  A M P L I T U C E S  A R E  S C A L E C  B Y  T H E  S O U A P E  R O O T  

C  O F  T H I S  T O T A L  P C W E P  5 C  T H A T  A u L  A f P L I T U C E S  C A N  S £  

C  P Z F E R E N C E D  T O  T H F .  T O T A L  P O k E P m  T H I S  N O R M A L I Z A T I O N  

C  W I L L  H E L P  I N  S E L E C T I N G  T H E  f C S T  S T A T I S T I C A L L Y  
C  S I G N I F I C A N T  S P E C T P A L  C C V P C N E N T S .  

C 

P P I N T  4 3  
4 3  F O R M  A T (  • 1 «  . 4 X , « N • , i X  ,  ' M A G N I T U D E *  , S X , ' P H A S E '  , g x  

1 , ' F R E Q U E N C Y ' . 4 X , ' C e  P E L A T I V E  T = ' /  

2  . 4 8 X . ' L ' K I T Y  T C T A L  F : * E P ' / )  
T P * R  =  0 . 0  

C C  4 0  J  =  1  «  N L V A X  
4 0  T P * F  =  T P * P + C X A G N ( J ) * C » A G N ( J )  

T P W K  =  T P * F * * O . S  

0 0  4 5  J = 1 , N L K A X  

C V A G N ( J ) = C t A G N ( J ) / T P , P  
X  J = J  

FCFo = xj/(TLEL*FNS ) 
C 0 3  =  2 0 . » - A L C 0 1 0 ( C W A G N  (  J )  )  

4 3  P R I N T  4 6 , J . C M A G N ( J  ) . C P H A S N ( J »  . F r L C . C D B  

4 6  F C R M A T ( I 6 , 3 E 1 3 . 3 , F 1 U « 2 )  

C  

C  C O M P U T E  T H E  f S T I M A T k C  T I M E  S f c P I E S .  F O L A  T I  C N (  1  2 0 . 6  )  

C 
N S = 4 * N S - 3  

T C E L = T C t L / 4  

N V A X = < N S - 1 ) / 2  
T F  = T N  
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9 6  C A L L  F S H S ( F X , < a , t  » C C V , N £ , T D Ê L » T F  )  

9 7  P R I N T  9 0  
9 c  9 0  F O W  A T (  •  1  •  .  I  i ; x  .  •  K «  , 7  >  ,  « T I  V E  •  ,  1  1  X  

l . ' S S T I M A T C C  F ( T I M S ) ' / )  /  

59 DC I 00 i=1 #NS 
1 0 0  I I = I - N M A X - 1  

1 0 1  X D E L T A = I  I * T D e , L  

1 0 2  1 0 0  o P f l N T  . 1  I  . X D t L T A  . H X ( I  )  

1 0 j  5 0  1  S T O P  

1 0 4  E N D  
C  L I N E  « P b C T R t y  S L B K C L T I X F  
C  

C  T H I S  S L E f i G U T I N f c  G c N E f - P T E S  1  H e  F C U P I E P  C C E F F I C I t L N T S  

C  A  A N C  b  F C P  N L S  S A M P L E S  C F  T H E  F U h C T I C N ,  F V A L U E .  

C 

1 0 5  S L a P C L T I ^ C  L i v S P T V ( F V 4 L L E  . A » S  . N L S t C C V  )  
1 0 6  D I M E N S I O N  F V A L L E ( 2 0 1 ) , A (  4 0 0),e< 4 0 0 )  
1 0 7  \ L W A X = ( N L S - l ) / 2  

1 0 9  0 1 = 3 . 1 4 1 5 9 2 6  
1 0 ^  X N N = N L S  

1 1 0  D C V = 0 .  

1 1 1  D O  1 5  J = l , h L S  
1 1 2  1 5  D C V = 3 C V + F V ^ L U E ( J )  

1 1 3  O C V = D C V / X N N  

1 1 4  D O  1 6  J = l , N L c  
1 1 5  l b  F V 4 L U c ( J ) = F V A L U U ( J ) - C C V  

1 1 6  D O  1 0  h = l , & L W A X  
1  1 7  A S U M  =  0 .  

118 eSUM=0. 
1 1 9  X N = N  

1 2 0  0 0  5  J ^ I . N L S  
1 2 1  J J = J - h L M A X - l  

1 2 2  X J J = J J  

1 2 3  A P G = 2 . 0 * P I # X N * X J J / X N N  

124 ASUM=CCSCABG)#FVALLE{J>+ASUN 
125 5 85UM=SIN( A R 6 ) * F V A L L E ( J)+aSLP 
1 2 6  A { N ) = 2 . 0 * A 5 U M / X N N  

127 10 8{ Nl =2»0»d£L>'/XKN 
1 2 8  C O  I ?  J = 1 , N L S  

1 2 9  1 7  F V A L U E ( J ) = F V M L U E ( J ) + C C V  

1 3 0  O E T U R N  

1 3 1  E N D  
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C 
C 
c 
c 
c 
c 
c 
c 

1 32 
1 3  j  
1 3 4  

1 3 5  
1 3 t  
1 3 7  

1  3 6  
1 3 Ç  
lAO 
161 
1 4 2  

1 4 ?  
1 4 4  5  

1 4 5  1 0  

1 4 6  

1 4 7  

FCUHILP '.jbfilCb ôUeP.GUTIrJE 

T H I S  S U M P O U T I N c  G c N E R A T E S  S A M P L E S  C r  T H £  Ù A T A  
F U N C T I C N .  F X d J .  US I N C  T t-c F O U P I E P  C O E F F I C I E N T S ,  
Ad), 8 ( 1 ) .  A N D  D C - V A L L E ,  C C V ,  A N C  T H E  N U ^ B - F  O F  

D t S I f ^ E C  S A M P L E S ,  N S .  T C E L  I £  T I - E  S A M P L I N G  r E F i J D  
A N D  T F  I S  T » - E  F C U P I F P  F E P I C C .  

S U H F C U T I N Ê  F S R S ( F X , A , B , L C V , N S ,TrFL , T F ;  
D I M F N S I C N  P  X ( e O ' i  )  . A  ( « i û O  )  , E  ( 4 0 0  )  
N M A X = ( N S - 1 ) / 2  
P I = 3 . 1 4 1 5 9 2 6  

XN£=N£ 

C O  1 0  1 = 1 ,  N S  
K = I - N W 6 X - 1  
X K = K  
F X K =  0 .  

C C  5  N = 1 , N M A X  
X N = N  

A F 6 = ( 2 . 0 » P I * X N » X K * T D E L ) / T F  

F X < = F X K + A (  N  J » C C S  {  A P G  ) + E (  N  )  » S  I N  (  A f . G  )  
F X C I ) =  F X K  +  D C V  

RETURN 
END 

SE NT P Y 
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K TI YC 

1  0 .6000000 E 

2  0 . I200000E 

3 0 .1600000E 

4  0 .2400000 E 

5  0 .300COOOE 

6  0 .3600000E 

7 o .4200000L 

6 0 .4oC0GC0F 

9  o •54Û0CÛC r  

1 0  0  .60C0000E 

1 i 0 •66COOOOE 

1 2  0  .720000ÛE 

I  3  0 .7300CCOE 

1 4  0 .64000ÛOC 

15 0 .9000000k 

1 e  c  .Ç6CC000C 

17 0 .1O20Û0ÙF 

1 8  0 .1080000E 

1 9  0 .1  140000E 

20 0 •1200000E 

2 1  0 .126CC00E 

22 0 .1320000E 

23 0 • 1 3 8 0 0 0 0 c  

2 4  0 .  1440000E 

25 0 •  1500000E 

26 0 .1560000t£ 

27 0 .1620000E 

28 0 •1680000E 

29 0 . 1 7 4 0 0 C O E  

30 0 .1800000E 

3 1  0 • 1 R 6 0 0 0 0 E  

32 0 .1S2000UE 

33 0 .1980000E 

3 4  0 •2040000E 

3 5  0  •2100000E 

3 6  0  • 2 1 6 0 0 C O E  

37 0 .2220C00E 

3 8  o .228000CE 

39 0 .2340000E 

4 0  0 .2400000E 

4 1  0 •2460000E 

F(TIVE) 

— 0 .63929992 02 

-0 .1643E00E 03 

-c  .ZEtOeClL C2 

-0  .22fl799E C3 

-c  .290200CE 03 

-c  .  10106CCE C3 

c  .e405000E 02 

c  .1SS62C0E 03 

0 .25088005 02 

c  .2205500E 03 

c  .  1111 3 C CL C3 

-0  .2C83000E 02 

-c  .  ee72COOE 02 

-c  .57 190CCE 02 

0 .7à630ù0E 02 

c  .  1427SC0b 03 

0 . l360e00E 03 

0 .19577CCE 03 

0 • 14785005 03 

0 •5160001E 02 

c  .1428000E 02 

-c  .352400 IE 02 

0 .450700 IE 02 

c  ,7S310CCE 02 

0 .%137S00E C3 

c  .  297030CE 03 

0 .£b€l£99E C3 

0 .15541OOE 03 

c  .747aC0CC 02 

c  .4 1200001.  02 

0 •62&7000E 02 

0 .1S240CCE C3 

0  .2246000E 03 

0 .237950CE 03 

c .24 14lOOE C3 

c .1943700E 03 

0 .11S5CCCE 03 

0 .9912000E 02 

0 .1357500E 03 

0 .21491CCE 03 

0 .3344900E 03 

02  

0 3  

0 3  

0 3  
0 3  

0 3  
0 3  

0 3  

0 3  

0 3  
0 3  
0 3  

0 3  

0 3  

0 3  
0 3  

0 4  

0 4  
0 4  

0 4  

0 4  

0 4  

0 4  

0 4  

0 4  
C4 

0 4  
0 4  

0 4  

0 4  

0 4  

0 4  

0 4  

0 4  

0 4  

0 4  
C 4  
0 4  

0 4  
0 4  
0 4  

/ 
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B Z E R O  M  

, 9 8 3 4 3 1 7 5  02 C .  1  2  5 t e 5 2 £  C O  C .  6 ?  

K  n v E  F < T  I M f c  )  

• 2 0  -  3 . 1 2 C U O O O F  0 4  C .  I c Z S ù ê ù E  C i :  

1  9  - 0 . 1  1 4 J 0 0 0  t  0 4  - 0  . « 2 2 5  1 4 < : f  0 2  

1 8  - o . i o e o o o o E  0 4  - G . 2 2 2 2 0 c e E  0 3  

1 7  - 0  . i o < ? o o o o r  0 4  - C . 2 c C 4 e £ e ë  C 2  

1 6  - 0  . 9 6 0 0 0 0 0 F  0 3  - 0 . 2 % 2 6 4 3 4 E  0 2  

1 5  - Û .  « r O C O O C O L  0 2  - C . C 1 6 6 C 7 2 E  0 2  

1 4  - 0  . 6 4 0 0 0 0 0 6  0 3  C  .  1  1 5 2 Ç 2 C F  0 2  

• 1 3  - C . 7 3 C O O C O r  0 3  0 . 2 1 & 7 0 4 7 F  0 3  

12 - 0 . 7 2 0 0 0 C 0 E  0 2  C .  2 t 5 e 0 7 4 E  C 2  

1  1  -0  .6600000 E 0 3  0  . 2 2 7 3 2 0 0 E  02 

1  0  - C . Ô C O O O O O E  0 3  0 .  l 0 9 7 4 2 f e L  0 3  

- Ç  - 0  . b 4 0 0 0 0 0 E  0 2  - C . 2 C 2 7 4 6 C E  0 2  

— 8  -0.4e00000E 0 2  - 0 . b 6 4 2 1 5 I L  0 2  

-7  - o . 4 ? o o o c o e  0 2  - C . t 3 C 4 S 2 6 E  0 2  

— 6  - 0  . 3 6 0 0 0 0 0 F  0 2  C . 4 S t l 3 4 t F  C 2  

- b  -0 .3000000E'  0 3  0 . 1 Û 1 6 1 6 1 E  0 3  

- 4  - O . P 4 C O O Û O E  0 2  C.f772ee2E 0 2  

-3  -0.1800000 E  03 C .  127281SE 0 5  

- 2  - 0 . i 2 o o o o o r  0 3  0 . e i 2 0 4 l 9 E  02 

-1  - 0 . 6 0 0 0 0 0 0 k  0 2  - 0 . 2 2 2 0 3 1  I F  C 2  

0 0 . O O O O O O O E  00 - 0 « C £5e04eE 02 

1  C . 6 0 0 0 0 0 0 E  0 2  - C . 1 2 6 3 S 7 e E  03 

2  0  . 1 2 0 0 0 0 0  f :  0 3  - G . S 4 2 0 5 C 9 F  0 2  

3 0 . 1 8 0 0 0 0 0 E  0 3  - C . 3 2 1 2 2 3 9 E  0 2  

4  Û.24000COP 0 3  C.Sei6032t  0 2  

5  C.3000Û00E 0 3  0 . 1722e3CE 0 2  

6 0 . 3 6 0 0 0 0 0 =  03 0 . 1 2 4 2 5 5 6 %  0 3  

7  0  . 4 2 0 0 0 0 0 r  0 3  C .  1 = 2 4 2 2 2 5  05 

e 0 . 4 8 0 0 0 0 0 1  0 3  -0#7243e9eE 0 2  

9  C . 5 4 0 0 0 C 0 E  0 3  - 0 .  1 1 5 l 7 f c 2 E  03 

1 0  0  . 6 0 0 0 0 0 0  E  0 3  - C . l C l E t Z f E  C3 

1  1  0 . 6 6 0 0 0 0 0 E  0 3  - 0 . C 0 2 Ç 0 7 7 E  0 2  

1 2  0 . 7 2 0 0 0 0 0 E  0 2  C . 4 3 7 6 1 7 7 L  0 2  

1 3  0 . 7 6 0 0 0 0 0 E  0 3  0  . 4 f c Ç 4 4 b 3 £  0 2  

1 4  C . 6 4 C 0 0 0 0 E  0 3  C . 4 4 2 4 7 3 1 L  OP 

15 o . ç o o c o o o r  0 3  - C .  I C Ç Ê C l é E  C 2  

16 0 . 9 6 0 0 0 0 0 F  0 3  - C . 9 7 9 7 7 3 t E  0 2  

1 7  C.10200001 0 4  - r . l 2 2 5 l 4 &E 0 3  

16 0  . l o a o o o o t  0 4  - C . Ç 4 C 4 k C t E  0 2  

19 0 . 1 1 4 0 0 0 0 c  0 4  - C « 2 3 0 3 9 3 i r  02 

20 0.12C0000& 0 4  0.ea3E34SE 02 
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r 

i  
2 

4  

b 
6 
7 
fo 
Ç 

1 O 
11 
1 2 
I  3  

1 4  

15 

l o  
1 7 
le 
IÇ 
20 

N 

1 

2 
3 
4  

5 

6 

7 
B 
9 

10 
1 1 
12 

13 
1 4  

15 
16 

17 
16 
19 
20 
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DC-VALUE CVAG CFHASE FPEC-hZ CMAC—Dfe 

0.662E-04 0.269E 02 0 .344E 02 C.4C7F-03 -E.E3 

0•662E— 04 0.24CF 02 -O.ÇCtfc  01 0  .  613 E-03 —6 .49 

0 .662E-04 0.245E 02 -0 .7ziE 02 C.122r- 02 — 6 .  64 

0 .662E-04 0.312E 02 -0.d73E 02 G.163&-02 -4*53 

0•062E— 04 C.640e 02 -0.1fc2E C2 C.203E-02 1 .70 

0 .6625-04 0.163E 02 o.seoE- 0 1 0.244E- 02 -10.20 

0.Ô62E- 04 0.333E 01 0.889E 00 0 .2655-02 -23.96 

0 e062E — 04 0.7431:  01 C.3ISE 0 1 C.325E- 02 -17.01 

0.A62E-04 0 . 2 5 e  t"  01  -U. l fOE 02 0.366&-02 -26,18 

0 • 6 6 2 E —  0 4  0 . 3 5 2 f  01 O . f c t t F  01 0  . 4 0 7  t . -02 —2 3 . 4 6  

0 • 6  62E— 0 4  0  .b2U C  1  O . C 4  3 f  0 2  C . 4 4 7 F . - 02 -20.  01-

0 • 6 6 2 f c —  0 4  C . 1 5 C r  0  1 0 . 3 9 i e  0 2  0 . 4 5 6 c —  02 - 3 0 . 6 7  

0•662t— 0  4  C .  3 ? 3 E  01 0 . 2  1S E  0 2  0 . 5 2 0  E —  02 - 2 4 . 2 4  

0 .662E-0 4  C.32 U r .  0  1  0 . 1 7 2 5  C2 C . 5 6 Ç E - 0 2  - 2 2 . 6 4  

C * 6 6 2 c —  0 4  0 . 13 7 E  01 0 .1 lee  01 0 .6 l O E -02 -31 . 7 0  

0 • 6 6 2 E —  0 4  0 . 3 8 2 5  0 1  0 . e C 3 E  0 2  0 . 6 E 0 E - 0 2  - 2 2 . 7 9  

0•Ô62E— 0 4  0 . 2 6 7 E  0 1 o . 3 6 9 =  02 c .eciv-C 2  -25.  K7 

Om662E— 0 4  0 . 3 2 1 E  01 0 . 7 J & E  0 2  0.732E-0 2  - 2 4 . 3 0  

0.662E-0 4  0 . 1 6 4 6  01 - 0 . 2 6  7E 0 2  C . 7 7 2 E - 0 2  -30.10 

0 •662E — 0 4  0.230E 01 0 . 4 5 0 E  02 0 «ei3E- 02 -27.  19 

M A G N I T U D E  PHASE FF.EOUENCY DE RELATIVE TO 
LMTY TCTAL POWCA 

0.31lE 00 0 .344E 02 0.407E-03 - iO. l  4 
C.2e9£ 00 -0.9C5E 01 C.ei3£-03 -10 .80 

0.284E 00 -0.731E 02 0 .  122E-02 -  10.94 

0.362E 0 0 -0 .e?3E 02 0.163E-02 —8 *84 

0.741E 00 -0.1S?E C2 C.2C3E-02 -2 .6  1 

0.188E 00 0.5P6E 0 1 0.244E-02 -  14.50 
0.386E-01 Ombt9E 00 0.285E-02 -28.26 

0.860E-01 0.315t  01 C.325E-02 -21.31 

0.294E-01 -0.160E 02 0.366E-02 -30 .48 
0.  40ec-01 0.866E 01 C.407E-02 -27.79 

0.603t-01 0.643E 02 C.447E-02 —24.3G 

0.  174E-01 0.391E Oc 0.488E-02 -35.18 

0.374E-01 0.219E 02 C.52&E-02 -28.54 
0.44 OE—0l 0  .172E 02 0.569E-02 -27.14 

0. 1S65-01 0. i ieE oi  0 .610E-02 -36.0 1 

0 .4422-01 0.6C3E 02 C. t£CE-C2 -27.OC 

0.3l0t i -01 0.369E 02 0.6Ç1E-02 -30.18 

0.3725-01 0.7386 02 C.732E-02 -28.60 

0.190E-0 1 -0 .267E 02 C.772E-02 -34.4C 

0.266C-01 0.450E 02 0 .613E-02 -31.50 
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34 -C.blCOOOOc 
33 -0.4S50000e 
32 -0.430000Uf 
31 -0.4650C00E 
30 -0.45COOOOF 
29 -0.4350C00E 
2e -C.4200CC0E 
27 -0.40S0000t 
26 -C.39000C0E 
25 -0.375CCCCE 
24 -0.3Ô00000C 
23 -0.3450000E 
22 -0,33C00C0E 
? l  -0.315ÛC00E 
20 -0.3000000L 
19 -0.235Û000E 
18 -0.2700000E 
17 -0.2550000E 
16 -0.2400000e 
15 -0,22S0000t 
14 -0.21C0000E 
13 -0.1950000E 
12 -0.13COOOOE 
11 -0.16S0000E 
10 -0.1500000E 
-9 -0.13S00C0E 
-e -0.1200000E 
-7 -0.1050000F 
—6 —0*900G000E 
-5 -0.7500000t 
— 4 —"0»6OOCOOOE 
-3 -0.4t jOOOCCE 
-2 -0.3000000E 
-1 -0.1500000E 

0 C.OOOOOOOE 
1 0.15000C0E 
2 0.3C000C0E 
3 0.4500000E 
4 C^OOGOOOOF 
5  0 . 7 5 0 O 0 0 0 L  

6 O.ÇOOOOOOt 
7 0.105000CE 
Ç P.1200000E 
9 0.13S0000F 

10 0.150O0C0E 
11 0.1650000E 
12 0.18COOCOE 
13 0.19SOOOOE 

-0.6t>2aoi '5£ 02 
-0.779vG13b 02 
-0.6f4Z099E 02 
-0.9063<g7[ 02 
-o.eeçtAïuE C2 
-0.79e9761E 02 
-C.63C4919E 02 
-0.3947273E C2 
-C. l lSOfcSlE 02 

0.176487#: CZ 
0.456I244Ê 02 
0.692B053E C2 
C.fc?C3726t CZ 
0.G7&447SE CZ 
O.lOlolbOC 03 
C.9S4fc<.CZ£ 02 
O.S39849ir 02 

C.£e772C6E 02 
0.67726765 CZ 
0.Ç354007E 02 
C.1062932£ C3 
0.12Z614GE 02 
0.1372&07E 03 
0 .14 21Z10E 02 

0 .13S5520E 02 

C.11366ÊÇE 03 

C.E120360E 02 
C .450e919E 02 

0.!294é37E 02 

-0.1006115E 02 
-0.232034fct  02 
-c.2r ie3ceF cz 
-0.370971ZE OZ 
-C.4Ç29091E 02 
-0.ee£8044E 02 
-0.92 17'1Ç2F 02 
-0.112611 &E 02 
-0.12663426 02 
-0.1263beiE 03 
-C- l l2211fe 03 
-0.9222533E CZ 
-C.70SA535E 02 
-C.S42C4S1E 02 
-0.4586327C 02 
-C.43271Ç6E C2 
-0.4099ee9E 02 
-0.3212216E 02 
-C. 122355eE CZ 

0Ô 
0 2  
Ô 3 
03 
02 

03 
02 

03 
03 
02 
03 
03 
C2 
03 
03 
02 

03 
02 

03 
03 
03 
03 
0 3  
02 
0 3 
02 

03 
03 
02 
02 

02 

02 
Oi' 
02 
00 
02 
02 
02 

02 
02 
0 2  

0 3 
02  
02 
02 

03 
03 
02 
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6 2  0 .  9 3 0 0 0 0 0 F  0 3  —  0  •  S 5 9 7 4 7 < E  0 2  

6 3  0 .  9 4 5 0 0 0 0 5  0 3  - c .  7S26S26E 0 2  

6 4  0 .  ÇoOOOOOt 0 3  - c .  S 7 9 7 6 % t E  C 2  

6 5  0 .  9 7 5 0 Û 0 0 E  0 3  —  0  •  1 1 2 Z 0 2 7 E  0 3  

6 c  c .  Ç 9 0 C O C O E  0 3  - 0 .  1 2 2 4 7 5 ? E  0 3  

6 7  0 .  1 O O S O O v E  0 4  - c .  1 2 S 3 1 C 7 F  C 3  

6 6  0 .  1 0 2 0 0 0 0 E  0 4  —  0  •  1 2 2 5 1 4 6 F  o 3  

6 9  0 .  1 C 3 5 0 0 0 E  0 4  —  c  •  1  l t ) 0 6 3 0 e  0 3  

7 0  0  .  1 0 5 0 0 0 0 E  0 4  —  0  •  1 0 K 3 3 2 6 E  C3 

7 1  0 .  1 0 6 5 0 0 0 E  0 4  —  c «  1 0 0 9 9 2 3 E  03 

7 2  0 .  1 0 8 0 0 0 0 F  0 4  - c .  9 4 C 4 1  / £ £  C2 

7 3  0  .  1  0 9 5 0 0 0 E :  0 4  —  0  •  e 5 5 4 6 4 9 E  0 2  

7 4  '  0 .  1  I  1 0 0 0 0 c  0 4  —  c  •  7 2 3 7 8 1 4 £  0 2  

7 5  0  .  1 I Z b O O O E  0 4  —  0  •  £  l 7 e« 6 4 C E  0 2  

7 6  u .  1  1 4 0 C 0 0 t  0 4  —  0  •  2 3 0 4 0 0  i t  0 2  

7 7  0 .  1 1 5 5 C 0 0 E  0 4  0 .  1  1 2 9 6  0  e F .  0 2  

7 8  0  .  1 1 7 0 0 0 0 F  0 4  0  .  4 S 7 6 4 7 6 E  0 2  

7 9  0 .  1 1 8 5 0 0 0 F  0 4  c .  7 3 4 5 7 0 J E  0 2  

8 0  0 .  1 2 0 0 0 0 0 t  0 4  0 .  E 2 2 e z e 4 E  C 2  

SSTOP 
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SJOB «RUSSELL •  •TIME=30.PAGES=75 
C PROGRAM 05 
C 
C FAST FOURIER TRANSFORM SPECTRAL DENSITY 
C 
C THIS PROGRAM ILLUSTPATES A SIMPLE EXAMPLE FOR THE 
C USE OF THE FAST FOURIER TRANSFORM. SUBROUTINE FFAST 
C CAN BE USED IN OTHER PROGRAMS WHERE HIGH SPEED 
C PROCESSING IS NEEDED. THE SUBROUTINE CONTAINS A 
C ZERO FILLING ROUTINE TO ACCOMODATE ANY LENGTH DATA 
C AND ANY DESIRED DISPLAY RESOLUTION. 
C 

1 DIMENSION A(1024),B(1024),CMAG(1024) 
2 DIMENSION FMAG(1024),FPHASE(1024),FR(1024) 
3 DIMENSION S (  1 02 4 )  ,  SNAM&'( 5 )  ,  XXÎ 1 024) 
4 DIMENSION X(1024),XMDC(I 024) ,XSV{1024).XT IME(1024) 

C 
C READ INPUT DATA — THE TIME SERIES. XCI) .  THE 
C NUMBER OF DATA SAMPLES. NS. THE SAMPLING INTERVAL. 
C DELTA-T. THE DESIRED FFT RESOLUTION OPTION. NRESL. 
C THE DC-REMOVAL OPTION, NDC. AND THE PRINT OPTIONS. 
C NPTl.  NPT2. NPT3, NPT4. 
C 

5 4 REA0C5,5.ENO=501) NPTl,NPT2.NPT3,NPT4,NDC 
+,NRESL.NS.XTDELT.SNAME 

e 5 FORMAT( 411,16,2 15,E18.7,11X,5A4) 
C 
C ****  USER SPECIFIED READ FORMAT ****  
C 

7 RcAD(5.10)(X(I>»I=1.NS) 
8 10 F0RMAT(E14.7) 

C 
c *************************************** 
c 
C PRINT INPUT DATA 
C 

9 PRINT IS.NPTl,NPT2.NPT3.NPT4,NDC, 
+ NRESL,NS.XTDELT 

10 15 FORMAT(•1*,17X, 'FAST FOURIER TRANSFORM'.  
+1X, 'SPECTRAL ANALYSIS' / / / , lOX,•PTOPT•«SX, 
+ 'NDC* ,3X, 'NRESL',3X, 'NS',6X,•TOELT-SEC.•/ / ,1 OX, 
+411,5X,11,217,El  8.7/ / / )  

C 
C COMPUTE THE AVS5AGE (OP DC-VALUE )  ,  THE M EAN-SCiUARE, 
C THE VARIANCE, AND THE STANDARD DEVIATION. 
C 

11 XNS^FLOAT(NS) 
12 DCV=0.0 
13 XBAR2=0.0 
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14 OO PO 1=1.NS 
15 DCV=OCV+XCI) 
16 20 X3AR2=XBAR2+X(I)*X{I)  
17 OCV=OCV/XNS 
18 XBAR2=XBAR2/XNS 
19 XVAS=(X6AR2-OCV*OCV)*XNS/(XNS-1.)  
20 STDEV=XVAR»*0.5 

C 
C COMPUTE THE ZER3-MEAN DATA FUNCTION AND TRANSFORM 
C THE DATA TO STANDARD VARIABLES BY DIVIDING EACH 
C ZERO-MEAN DATA VALUE SY THE STANDARD DEVIATION. 

C 
21 DO 25 1=1.NS 
22 XTIME(I  )=FLOAT( I - l  )«XTOELT 
23 XMDC( I  ) =XI I  )-DCV 
24 25 XSV(I>=XyOC(I) /STOLV 

c 
25 PRINT 30.SNAME.0CV,XBAR2.XVAR,STDEV 
26 30 FORMATC • , / / / ,  1 0 X , •  INPUT DATA FUNCTION STATISTICS: '  

+.2X.5A4./ / .8X. 'AVERAGE'.5X. 'MEAN-SQUARE'.5X, 
+'VARIANCE',5X, 'STANDARD DEVIATION', / / .5X,E12.5 
+.3X,E12.S,3X,E12.5.3X.E12.5, / / / )  

C 
27 IFCNPTl .EQ. 0) GO TO 50 
28 PRINT 35 
29 35 FORMATC ' ,7X, 'T ' ,3X, ' INPUT DATA FUNCTION'.3X 

+, 'ZERO MEAN',5X. 'STANDARD VARIABLES'. / )  
30 DO 40 1=1,NS 
31 40 PRINT 45.I .X(I) ,XMDC(I) ,XSV(I)  
32 45 FORMATC • , I8,3E18.7> 

C 
C SELECT THE DESIRED FORM OF THE DATA FUNCTION 
C FOR FFT PROCESSING. 
C 

33 50 NDC = N0C-1 
34 .  IF(NDC) 75.55,65 
35 55 DO 60 I-=1,NS 
36 60 X(I)=XMOC(I)  
37 GO TO 75 
38 65 DO 70 1=1,NS 
39 70 X(I)=XSV(I)  

C 
C THE INPUT TIME SERIES HAS BEEN PREPROCESSEO INTO 
C A CONVIENENT FORM. THE FFT COEFFICIENTS ARE NOW 
C COMPUTED. 
C 
C FILL THE FFT ARRAY WITH TIME SERIES DATA AND 
C COMPUTE THE REAL AND IMAGINARY COMPONENTS OF THE 
C COMPLEX FOURIER AMPLITUDE COEFFICIENTS. 
C 
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43 
44 
45 
46 
47 

48 
49 
50 

51 
52 
53 
54 
55 
56 
57 

58 
59 
60  

61 
62 
63 

64 
65 
66 

67 
68 

69 
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75 CONTINUE 
DO 80 1=1,NS 
A(I)=X{I)  

80 B(I)=0.0 
K=0 

CALL FFAST(A,B.NS»NRESL.K) 
N=2**(K+NPESL) 

KMAX=2»»(K+NRESL-1) 
C 
C CONVERT THE REAL AND IMAGINARY COMPONENTS INTO 
C MAGNITUDE AND PHASE COMPONENTS. 
C 

DO 85 1=1.N 
FMAG(I)=(A{I)*A(I)+8(I)*B(I))**0.5 

85 FPHASE(I)=57.29577*ATAN2(8(I) ,A(I>) 
C 
C COMMUTE THE ESTIMATED DISCRETE FOURIER AMPLITUDE 
C SPECTRUM BY SCALING. 
C 

XN=FLOAT(N) 
DO 90 1=1,KMAX 
L=I-  1 
XL=FLOAT(L) 
XX(I)=FMAG(I J•XTDELT 
CMAG(I)=FMAG(I) /XN 

90 FR(I)=XL/(XN»XTD£LT) 
C 
C COMPUTE THE ESTIMATED POWER SPECTRAL DENSITY 
C FUNCTION. 
C 

DO 95 I=1«KMAX 
L=I-1 

95 Sd ) =CMAG(I)»CMAG( I  )*XTDELT*XN 
C 
C PRINT RESULTS 
C 

IF(NPT2 .EQ. 0 )  GO TO 115 
PRINT 100 

100 FORMAT(• l ' .10X,»FFT COMPLEX OUTPUT*,/ / .9X, 'N' .6X, 
+ 'FMAG'.7X, 'FPHASE'.6X,•A(N)•,8X,•8(N)•,•)  

DO 105 1=1,N 
105 PRINT 110,I .FMAGCIJ.FPHASE(I) ,A(I) ,B(I)  
110 FORMAT(« • , I9,4E12.3) 
C 
115 IF(NPT3 .EQ. 0) GO TO 135 

PRINT 120 
120 FORMATf ' l ' . lOX, 'AMPLITUDE SPECTRAL DENSITY', / / ,  

+9X. 'L ' .6X, 'FRE0UENCY-HZ',5X 
+, 'MAG XX(WJ-V/HZ*,7X,«CMAG-OFT»,/)  
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DO 125 1=1.KMAX 
L=I-1 

125 PRINT 130,L,FR(I) ,XX(I) .CMAG(I) 
130 FORMATC» •.I9,3E16.7) 

C 
135 IF(NPT4 .EQ. 0)  GO TO 499 

PRINT 140 
140 FORMAT(• 1• .1 OX,'POWER SPECTRAL DENSITY•,/ / ,9XL*. 

+  7 X , * F R £ Q U £ N C Y - H Z * , 6 X ,  ' M A G  S i  I , / / )  
DC 145 I=1,KMAX 
L = I-1 

145 PRINT 150,L.Ffi(I)»StI)  
150 FORMATC • .I9.2E19.7) 
499 CONTINUE 
C 
c  **** USER SUPPLIED PLOT ROUTINES **** 
C 
c as INPUTS sa 

c 
C TIME VARIABLE. XTIME(I).  
C INPUT DATA FUNCTION, X(I) .  
C DATA FUNCTION WITH DC-VALUE REMOVED. XMOC(I).  
C STANDARD VARIABLES. XSV(I) .  
C 
c sa OUTPUTS se 

c 
C FREQUENCY VARIABLE IN HERTZ. FR{IJ.  
C AMPLITUDE SPECTRAL DENSITY. XX(I) .  
C POWER SPECTRAL DENSITY. S(I) .  
C 

GC TO 4 
501 STOP 

END 
C 
C FAST FOURIER TRANSFORM SUBROUTINE 
C 

SUBROUTINE FFAST(A,B,NS,NRESL,K) 
C 

DIMENSION A(1024) ,8(  1024) 
C 
C TEST THE TOTAL NUMBER OF POINTS AND IF NS IS N.E. 
C TO 2**K. FILL THE REMAINING TIME SERIES ARRAY. A(I)  
C WITH ZEROS. IF ADDITIONAL DISPLAY RESOLUTION IS 
C DESIRED. ZERO-FILLING CAN BE IMPLEMENTED BY 
C SELECTING THE RESOLUTION CONSTANT, NRESL. 
C 
C 
C DETERMINE THE POWER-OF-TWO ORDER, K. 
C 
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zns=float«ns) 
XK=al_OG(ZNS j /AL0G(2.0 ) 
K=INT(XK) 
n=2**k 
IF(NS.GT.N) K=K+1 
N=2**(K+NRESLJ 

C 
C ZERO-FILL. 
C 

NSP1=NS+1 
DO 5  I=NSP1,N 
A(I)=0.0 

5 e(i)=o.o 

c 
C COMPUTE THE FFT ON N DATA POINTS USING TIME 
C DECOMPOSITION WITH INPUT BIT REVERSAL. 
C 

MR=0 

nn=n-1 
DO 20 M=1,NN 
L=N 

10 L=L/2 
if(mr+l.6t.nn) go to 10 
MR=MCD(MR,L)+L 
IF(MR.LE.M) GO TO 20 
tr=a<m+1> 
A(M4- 1)=A(MR+1 )  
A(MR+1)=TR 
TI=B(M+1) 
B(MR+1)=TI 

20 CONTINUE 
L = 1 

30 IF(L.GE.N> RETURN 
I  STEP=2»L 

EL=FL0AT(L3 
DO 4 M=1,L 
z=3.1415926*fl0at{1-mj/el 
WR=COSl Z) 
WI=SIN(Z) 
DO 4 I=M,N,ISTEP 
J = I+L 
TR=WR*A(J3-WI*B(J) 
TI=WR*8fJ)+WI*A(J) 
A(J)=A(I)-TR 
B(J)=B(I)-TI 
A(I)=A(I)+TR 

4 a(I)=8(I)+TI 
L=ISTEP 
GO TO 30 
END 
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FAST FOURIER TRANSFORM SPECTRAL ANALYSIS 

PTOPT NDC NRESL NS TDELT-SEC. 

1111 0 0 15 0.3000000E 00 

INPUT DATA FUNCTION STATISTICS: EXP(-TiSIN(T) 

AVERAGE MEAN-SQUARE VARIANCE STANDARD DEVIATION 

0.11129E 00 0.27733E-01 0.16443E-G1 0.12823E 00 

INPUT DATA FUNCTION ZERO MEAN STANDARD VARIABLES 

1 O.OOOOOOOE 00 -0 .1112922E 00 -0.86 79157E 00 
2 0.2189268E 00 0 .1076345E 00 0.839391 IE 00 
3 0.3098824E 00 0 .  1985902E 00 0.1548711E 01 
4 0.31 84770E 00 0 .2071847E 00 0.1615736E 01 
5 0.2807248E 00 0 .1694326E 00 0.Î321324E 01 
6 0.2225712E 00 0 .1112790E 00 0.8678120E CO 
7 0.16 097S9E 00 0 .4963363E- 01 0.3874592E 00 
8 0.105705SE CO -0 .5586743E-•02 -0.4356838E- 01 
9 0.6127660E-01 -0 .5001564E- 01 -0.3900484E 00 

1 0  0.28 72 2 3 0E-01 -0 .8256990E- 01 -0.64 39236E 00 
1 1 3.7026002E-02 -0 .1042662E 00 -0.8131231E 00 
1 2  -0.5818199E-02 -0 .1171104E 00 -0.9132890E 00 
1 3  -0.1 2091 30E-01 -0 .1233835E 00 -0.9622099E 00 
I 4  -0.1392170E-01 -0 .1252139E 00 -0.9764843E 00 
1 5  -0.13 06980E- 01 -0 .1243620E 00 -0.9698405E 00 

FFT COMPLEX OUTPUT 

N FM AG FPHASE A( N) B (N) 

1 0.  167E 01 0.  OOOE 00 0 .  167E 01 0 .OOOE 00 
2 0.  127E 01 —0 .  836E 02 0 .141E CO -0 .  126E 01 
3 0.  473E 0 0 -0.  134E 03 -0 .326E 00 -0 .343E 00 
4 0.  226E 00 -o.  153E 03 -0 .201E 00 -0 .103E 00 
5 0.  140E 00 -0.  164E 03 -0 .135E 00 -0 .379E- 01 
6 0.  105E 00 — 0 .  1 72E 03 -0 .  104E 00 -0 .  144E- 01 
7 0.  887E-01 -0.  1 77E 03 -0 .886E- 01 -0 .491E-02 
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8 0.  819E-01 -0.179E 03 -0 .819E -01 -0 .130E-•02 
<J 0 .  799E- 01 0.180E 03 -0 .799E--01 0 .OOOE 00 

10 0.  819E- 01 0.179E 03 -0 .8192--01 0 .130E- 02 
11 0.  887E- 01 0.177E 03 -0 .  886E--01 0 .491E- 02 
12 0.  1 05E 00 0.172E 03 -0 ,  104E 00 0 .I44E- 01 
13 0.  140E 00 0.164E 03 -0 .135E 00 0 .379E-01 
14 0.  2265 00 0.153E 03 -0 .201E 00 0 .  103E 00 
15 0.  4 73E 00 0.134E 03 -0 .326E 00 0 .343E 00 
16 0.  127E 01 0.836E 02 0 .  141E 00 0 .  126E 01 

AMPLITUDE SPECTRAL DENSITY 

L FREQUENCY-HZ MAG XX(W)-V/H2 CMAG-DFT 

0 O.OOOOOOOE OO 0.5008157E 00 0.1043366E 00 
1 0 .2083333E 00 0.38073555 00 O.79Ô3033E-01 
2 0.4166666E 00 0.1419684E 00 0.2957676E-01 
3 0.6249999E 00 0.67819365-01 O.1412904E-01 
4 0.8333333E 00 O.4204089E-01 0.6758519E-02 
5 0.1041666E 01 0.3137103E-01 0.6535631E-02 
6 0.1249999E 01 0.2661949E-01 0.5545728E-02 
7 0.1458333E 01 0.2456124E-01 0.5116925E-02 

POWER SPECTRAL DENSITY 

L FREQUENCY-HZ MAG S(I)-W/HZ 

0 O.OOOOOOOE OO 0.5225342E-01 
1 0.2033333E 00 0.3020732E-01 
2 0.4166666E 0 0 0.4198965E-02 
3 0.6249999E 00 0.9582227E-03 
4 O.8333333E OO 0.3682158E-03 
5 0.1041666E01 0.2050294E-03 
6 0.1249999E 01 0.1476245E-03 
7 0.1458333E01 0.1256780E-03 
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SJOB 'RUSSELL',TIME=30.PAGES=75 
C 
C OROGRAM 06 
C 
C ESTIMATION OF SINGl_F-S INEWAVE PARAMETERS 
C 
C THIS PROGRAM COMPUTES THE BEST FIT OF A SIN6LE-
C FREQUENCY SINEWAVE TO AN INPUT TIME SERIES WHEN 
C THE SINEWAVE PERIOD IS KNOWN OR ESTIMATED. 
C 

DIMENSION X(lOOOJ,FS(1000).XR(lOOC),XMDCC1000) 
DIMENSION SNAME( 5)  .XTIME( 1000) 

C 
C READ INPUT PARAMETERS 
C 
4 READ(5»5tENO=50l)  NS.TZERO,TDELT,SNAME 
5 F0P.MATII5.5X,2Elô.6.7X,5A4) 
C 
C **** USER SPECIFIED READ FORMAT **** 
C 

READC 5,10)(X(I) ,  1=1,NS) 
10 FORMATCE14.7) 
C 
c **********#******$***************** * 
c 
C PRINT INPUT PARAMETERS 
C 

PRINT IS.NS,TZERO,TDELT 
15 FORMATC•1*,9X,«ESTIMATION OF SINGLE-SINEWAVE »,  

+ «PARAMETERS*// / ,I  IX, •INPUT PARAMETERS: ' / / .IIX 
+,«NS»,5X,«TZERO-SEC.«,7X,«TDELT-SEC.••/  
+,114,2El7.7)  

C 
C COMPUTE THE AVERAGE, MEAN-SQUAREÎ VARIANCE, AND 
C STANDARD DEVIATION OF THE INPUT TIME SERIES. 
C 

XNS=NS 
DCV=0.0 
X3AR2=0. 0 
DO 20 1=1,NS 
DCV=DCV+X(I) 

20 XBAR2=X8AR2+X(1)»X(I> 
DCV=OCV/XNS 
XBAR2=X3AR2/XNS 
XV4R=(XBAR2-DCV*DCV)*XNS/{XNS-1.)  
STDEV=XVA3**0.5 

C 
C COMMUTE THE ZERO-MEAN DATA FUNCTION 
C 
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DO 25 1=1,NS 
25 XMOC(I)=X(I)-OCV 
c 
C PRINT THE INPUT TIME SERIES STATISTICS. INPUT 
C TIME SERIES, AND ZERO-MEAN DATA FUNCTION. 
C 

PRINT 30•SNAME.0CV.XBAR2,XVAR,STDEV 
30 FORMlTf* •///,lOX,» INPUT DATA FUNCTION STATISTICS:" 

+.2X,5A4// ,8X,«AVERAGE*,4X,•MEAN-SQUARE•.4X 
<-.  •  VARIANCE* ,3X, • STANDARD DE VI AT I  ON */•3X .  4E14 ,  S/ / / )  

PRINT 31 
31 FORMATC* ' ,5X.*T*.4X,*INPUT TIME SERIES' 

+,4X,'ZERO-MEAN TIME SERIES*/)  
DO 35 1=1.NS 

35 PRINT 36.  : ,X(I ) ,XMDC( I> 
36 FORMAT(I7,E18.4,E21.4)  
C 
C COMPUTE EQUATIONS {1J.15) AND (13.16) USING THE 
C ZERO MEAN DATA FUNCTION. 
C 

N=(NS-1)/2 
oi=3.1415926 
ZE0=(2.*PI*TDELT)/TZERO 
AL3HA=0. 0 
BETA=0.0 
DO 40 1=1.NS 
L=I-N-1 
XL=L 
ALPHA= ALPHA+XMOC (  I  > *COS ( XL«ZED )  

40 BETA=BETA+XMOC(I)*SIN(XL»ZEO) 
C 

ALPHA=ALPHA/XNS 
BE TA=-BE TA/XNS 

C 
C COMPUTE THE MAGITUDE AND PHASE OF THE COMPLEX 
C AMPLITUDE COEFFICIENT GIVEN BY EQUATIONS 
C (13.17) AND (13.18).  
C 

CMAG=(ALPHA*ALPHA+6ETA*BETA)**0.5 
CPHASE=S7.29577*ATAN2(6ETA,ALPHA) 

C 
C COMPUTE THE MAGNITUDE AND PHASE OF A SINGLE-
C FREQUENCY SINEWAVE WHICH IS A BEST FIT. 
C 

DMAG=2.*CMAG 
DPHASE=CPHASE-270 .  

C 
C PRINT THE FREQUENCY, MAGNITUDE, AND PHASE OF THE 
C SINEWAVE. 
C 
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FREQ=l. /TZERO 
PRINT 45.FREQ.OMAG.OPHASE 

45 FORMAT('l ' ,7X,'BEST-FIT SINEWAVE:'/ / ,7X 
+."FREQUENCY"»7X,•OMAG•,8X,•OPHASE-OEG"/•.4X, 
+3E14.4// / )  

C 
C COMPUTE THE "RESIDUE" TIME SERIES AND 
C ITS STATISTICS. 
C 

OPHASE=2.*PI*DPHASE/360.  
DO 50 1=1,NS 
L=I-N-1 
XL=L 

50 XRÎI)=XMDC(I>-OMAG#S£N(XL*ZED+OPHASE) 
DCV=0.0 
X8AR2=0.0 
DO 60 1=1,NS 
DCV=DCV+XR(I) 

60 XSAR2=X8AR2»XR{I)*XR(I) 
DCV=OCV/XNS 
X8AR2=X8AR2/XNS 
XVAR=<XaAR2-OCV«OCV)«XNS/CXNS-l•i  
STDEV=XVAR**0.5 

C 
C PRINT THE "RESIDUE" TIME SERIES STATISTICS. 
C 

PRINT 70.0CV,X8AR2.XVAR,STOEV 
70 FORMAT!• ". lOX."RESIDUE TIME SERIES STATISTICS:"//  

+.8X."AVERAGE".4X,"MEAN-SQUARE",4X."VARIANCE" 
+.3X,"STANDARD OEVlATI0N"//3X,4El4.5/ / / )  

C 
C PRINT THE ZERO-MEAN DATA FUNCTION* BEST FIT 
C SINEWAVE. AND RESIDUE TIME SERIES. 
C 

PRINT 75 
75 FORMAT(" "/ / / .14XREFERENCE".26X,•RESIDUE"/.  

+6X."T'.6X,"TIME SERIES",7X,'SINE*AVE" 
+.8X.'TIME SERIES"//)  

DO 80 1=1.NS 
l_=I-N-l  
XL=L 
XTIME(I)=FLOAT(I-1}*TOELT 
FS(I)=DMAG*SIN(XL$ZED+DPHASE) 

80 PRINT 90.L.XMOC(I),FS(I) ,XR(I)  
90 FORMAT(I7.3E17.4) 
C 
C **** USER SUPPLIED PLOT ROUTINES »•#» 
C 
c aa INPUTS as 
c 
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C TIME VARIABLE, XTIMEdJ. 
C INPUT DATA FUNCTION. X(I) .  
C ZERO-MEAN DATA FUNCTION. XMDC(I).  
C 
C 5)0) OUTPUTS a s  

C 
C SINEW4VE FUNCTION, FS(I) .  
C «RESIDUE" TIME SERIFS. XR(I) .  
C 
Q *****$****:**********$************ **** 

c  
72 GO TO 4 
73 501 STCD 
74 END 

ESTIMATION OF SINGLE-SINEWAVE PARAMETERS 

INPUT PARAMETERS: 

NS TZERO-SEC. TDELT-SEC. 

41 0.4926101E 03 0.6000000E 02 

INPUT DATA FUNCTION STATISTICS: HER A 7/29/75 LINREG 

AVERAGE MEAN-SQUARE VARIANCE STANDARD DEVIATION 

0.72944E-04 0.14904E 05 0.1S276E 05 0.12360E 03 

T INPUT TIME SERIES ZERO-MEAN TIME SERIES 

1 0.1626E 02 0.1626E 02 
2 -0.9235E 02 -0.9235E 02 
3 -0.2222E 03 -0.2222E 03 
4 -0.2805E 03 -0.2805E 03 
5 -0.2426E 03 -0.2426E 03 
6 -0.6156E 02 -0.6166E 02 
7 0.1153E 03 0.1153E 03 
8 0.2187E 03 0.2187E 03 
9 0.2S53E 03 0.2653E 03 
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1 0 0.2273E 03 0.2273E 03 
11 0.1097E 03 0.109 7E 03 
12 -0.3037E 02 -0.3037E 02 
13 -0.8642E 02 -0.8642E 02 
14 -0.630SE 02 -0.6305E 02 
15 0.4561E 02 0.456 IE 02 
16 0.1016E 03 0.1016E 03 
17 0.8773E 02 0.8773E 02 
18 0.1373E 03 0.1373E 03 
19 0.8120E 02 0.8120E 02 
20 -0.2320E 02 -0.2320E 02 
21 — 0 .6 85 8 E 02 -0.6858E 02 
22 -0.1264E 03 -0.1264E 03 
23 -0.542 IE 02 -0.542 IE 02 
24 -0.3212E 02 -0.3212E 02 
25 0.9816E 02 0.9816E 02 
26 0.1733E 03 0.1733E 03 
27 0.1243E 03 0.1243E 03 
28 0.1535E 02 0.1535E 02 
29 -0.7344E 02 -0.7344E 02 
30 -0.1 1S2E 03 -0.1152E 03 
31 -0.1 019E 03 -0.1019E 03 
32 -0.2029E 02 -Û.2029E 02 
33 0.4375E 02 0.4375E 02 
34 0.4894E 02 0.4894E 02 
35 0.4425E 02 0.4425E 02 
36 -0.1095E 02 -0.1095E 02 
37 -0.9 798E 02 -0.9798E 02 
38 -0.1225E 03 -0.1225E 03 
39 -0.9404E 02 -0.9404E 02 
40 -0.2304E 02 -0.2304E 02 
41 0.8338E 02 0.8838E 02 

BEST-FIT SINEMAVE: 

FREQUENCY OMAG DPHASE-DEG 

0.2030E-02 0.1285E 03 -0.1053E 03 

RESIDUE TIME SERIES STATISTICS: 

AVERAGE MEAN-SGUARE VARIANCE STANDARD DEVIATION 

0 .15755E 00 0.66434E 04 0.68095E 04 0.82520E 02 
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REFERENCE RESIDUE 
TIME SERIES SINEWAVE TIME SERIES 

0.1626E 02 0.1273E 03 -0.IIIOE 03 
-0.92 35E 02 U.7988c 02 -0.1722E 03 
-0.2222E 05 -0.1209E 02 -0.2101E 03 
-0.2805E 03 -0.9731E 02 -0.1832E 03 
-0.2426E 05 -0 .  1283E 03 -  0.1144E 03 
—û •  61 66E 02 -0.8770Ê 02 0.2604E 02 

0.1153E 03 0.I774E 01 0.  1135E 03 
0.2187E 03 0.9026E 02 0.1284E 03 
0.2658E 03 0.1284E 03 0.  1374E 03 
0.2273E 03 0.9496E 02 0.  1324E 03 
0.  10 97E 03 0 .8551E 01 0.1012E 03 

-0.3017& 02 -0.8262E 02 0.522SE 02 
-Û.8642E 02 -0.1277E 03 0.4130E 02 
-0.  63 OSE 02 —0.1016E 03 0.38 55 E 02 

0.4561E 02 -0.1882E 02 0.6443E 02 
0.1016E 03 0.7446E 02 0.2716E 02 
0.  8773E 02 0.1262E 03 -0.3848E 02 
0.  13 73E 03 0 •  1076E 03 0.2969E 02 
0.8120E 02 0.2897E 02 0.5224E 02 

-0.2320E 02 -0.6581E 02 0.4260E 02 
-0.6858E 02 -0.1239E 03 0.5530E 02 
-0.  1264E 03 -0.1129E 03 -0.1348E 02 
-0.5421E 02 -0.3893E 02 -0.1523E 02 
-0.3212E 02 G,5&73E 02 -0.8885E 02 

0.9816E 02 0.  1208E 03 -0.22S9E 02 
0.1733E 03 0.1174E 03 0.5584E 02 
0 .  1243E 03 0.4864E 02 0.7S62E 02 
0.1535E 02 -0.4729E 02 0.6264E 02 

-0.7344E 02 -0.  1163E 03 0.4340E 02 
-0.1152E 03 -0.  1212E 03 0.6065E 01 
-0.1019E 03 -0.5803E 02 -0.4383E 02 
-0.2029E 02 0.3754E 02 -0.5783E 02 

0.43 75E 02 0 .  1122E 03 -0.6SA3E 02 
0 .  48 94E 02 0.1245E 03 -0.7531E 02 
0.4425E 02 0.Ô705E 02 -0.2280E 02 

-0.1095E 02 -0.2755E 02 0.1660E 02 
-0.97 98E 02 -0.1068E 03 0.8809E 01 
-0.1225E 03 -0.1265E 03 0.3960E 01 
-0.94 04E 02 -G « 7563E 02 -0.1841E 02 
-0.  23 04E 02 0.1738E 02 -0.4042E 02 

0.8838E 02 0.1007E 03 -0.  1232E 02 



www.manaraa.com

1 

2 
3 
4 

5 

6 
7 
8 
9 

10 
11 

12 
13 

14 
15 

16 
17 

466 

SJ08 'RUSSELL'.TIME=30,PAGE5=7S 
C 
C PROGRAM 07 
C 
C MAXIMUM ENTROPY SPECTRAL ANALYSIS 
C 
C THIS PROGRAM COMPUTES THE MAXIMUM ENTROPY SPECTRAL 
C ESTIMATE FOR A TIME SERIES. THE PROGRAM WILL DO A 
C FIRST ORDER LINEAR REGRESSION ANALYSIS» IF DESIRED, 
C AND ALSO CONVERT THE DATA TO STANDARD VARIABLES. 
C 

DIMENSION AK(100).FR( 1000 J 
DIMENSION S(1000).SPLCTl1000),SNAME(5) 
DIMENSION X(1000).XMDC(1000),XNORM(1000) 
DIMENSION XSV(IOOO).XTIMEtlOOO) 

C 
C READ INPUT DATA THE TIME SERIES. X(I) ,  THE 
C NUMBER OF DATA SAMPLES. NS, THE MAXIMUM NUMBER OF 
C COEFFICIENTS TO 3E CALCULATED, MM. THE SAMPLING 
C INTERVAL. DELTA-T, AND THE DESIRED RESOLUTION IN 
C THE MEM SPECTRAL ESTIMATE. DELTA-F. SNAME IS A USER 
C DEFINED LABEL FOR THE INPUT DATA SET. LINREG IS 
C A PROCESSING OPTION. NPTl,  NPT2 .  NPT3. NPT4. ARE 
C PRINT OPTIONS. 
C 
4 REAO(S,S,ENO=501) NPT1.NPT2,NPT3»NPT4 

+.LINREG,NS,MM,XTDELT.FDELT,SNAME 
5 FORMAT(4II .I6,215,E13.3,E15.3.5A4) 

N=NS 
XN=FLOAT(N) 

ÎFfFDELT) 501.6.7 
6 FDELT=.25/{FL0AT(NS)»XTOELT) 
7 CONTINUE 
C 
c  **** USER SPECIFIED READ FORMAT **** 
C 
C READ INPUT DATA FUNCTION. 
C 

READ(5.10)£X(I) .1=1.N) 
10 FORMATCl0X,F14.2)  
C *********************************** 
C 
C PRINT INPUT DATA. 
Ç 

PRINT 15 
15 FORMAT('I• ,17X.*MAXIMUM ENTROPY SPECTRAL ANALYSIS'.  

+/ / / ,9X,•PTOPT'»2X.'LINREG'.3X.'NS',5X,'MM', 
+3X,'DELTA-T, SEC'.3X,•DELTA-F. HZ'/)  

PRINT 20,NPT1,NPT2,NPT3,NPT 4,LINREG,NS,MM,XTDELT•FOELT 
20 FORMATC '  ,9X,41 1 ,4X, 11,3X, 15,  17 ,E 15.7 ,E 16.7)  
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C 
C DO A FIRST ORDER LINEAR REGRESSION ANALYSIS TO 
C REMOVE ANY LINEAR TRÉND AND COMPUTE THE 
C AVERAGE VALUE. 
C 
25 KSUM=0 

KSUM2=0 
XKSJM=0.0 
XSUM=0.0 

XDC=0. 
c 
C COMPUTE THE AVERAGE VALUE. 
C 

DO 30 K=1,N 
30 XDC = XDC+X(K) 

XDC=XOC/XN 
DC 35 K=1,N 

35 XMDC(K)=X(K)-XOC 
C 
C COMPUTE LINEAR REGRESSION. 
C 

DO 40 K=1.N 
KSUM=KSUM+K 
KSUM2=KSUM2+(K**2 )  

XKSUM=XKSUM+FLOAT(K)*X(K) 
40 XSUM=XSUM+X(K) 

XTBAR=XTDELT*FLOAT{KSUM)/XN 
XBAR=XSUM/XN 

XTSUM2=X TDELT**2*FLOATt KSUM2> 
XTSUM=XTDELT*XKSUM 
BXl=(XTSUM -XTBAR*XBAR*XN)/(XTSUM2-XN * (XTaAR**2.))  
BZER0=XBAR-BX1*XTBAR 
DO 45 K=1,N 

45 XNORM(K)=X (K)-8ZERO-SXl*K*XTDELT 

C 
C THE TIME SERIES HAS NOW BEEN CORRECTED FOR ANY 
C LINEAR TREND AND THE DC-VALUE HAS BEEN REMOVED. 
C 
C 
C COMPUTE THE STATISTICS FOR THE VARIOUS FORMS OF 
C THE DATA FUNCTION. ALSO. TRANSFORM THE DATA INTO 
C STANDARD VARIABLES BY DIVIDING EACH ZERO-MEAN DATA 
C VALUE BY THE STANDARD DEVIATION. 
C 
SO PZER01=0.0 

PZER02=0.0 
PZER03=0.0 
DO 55 1=1.N 
PZER01=PZER01+X{I)*X<I> 
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PZER02=PZERO2+XNORM(l)#XNORM(I) 
55 PZER03=PZER03+(X(I)-XDC)*(X(I)-XDC) 

PT=PZER01/XN 
PZER01=PZER01/(XN-1.)  

PZER02=PZER02/(XN-1.)  
PZER03=PZER03/(XN-1.)  
STOEV2=PZERO2**0.5 
STOE V3= P ZER03**0.5 
DO 60 1=1,N 
XI = I  
XTIME<I)=XI*XTDELT 

60 XSV(I)=XN0RM(I)/STDEV2 
C 

PRINT 6 5.SNAME.XDC,PT.PZER03.ST0EV3 
65 FORMATC • , / / / ,  1 OX, •  INPUT DATA FUNCTION STATISTICS:' .  

+2X.SA4,/ / ,8X,'AVERAGE',5X,«MEAN-SQUARE'.SX, 
+'VARIANCE*.4X.«STANDARD DEVIATION",/ / ,5X,E12.5 
+,3X,E12.S,3X,E12.S,3X,E12.5, / / / )  

C 
PRINT 70.aZERO,3Xl,PZER02,ST0EV2 

70 FORMATC ' ,9X,'DATA FUNCTION STATISTICS AFTER lOX, 
+ 'L INEAR REGRESSION:', / / ,8X,'BZERO'.11X.'81' ,10X, 
+•VARIANCE*,4X,'STANDARD DEVIATION'./ / ,5X.E12.5 
+,3X,E12.5,3X,E12.5,3X,F12.S, / / / )  

C 
IF(NPTl .EQ. 0)  GO TO 90 
PRINT 75 

75 FORMATC ' ,  7X , 'T3X INPUT DATA FUNCTION'.4X, 
+'LINREG',7X,'STANDARD VARIABLES', /)  

DO 80 1=1.N 
80 PRINT 85,I ,X(I) ,XNORM(I),XSV(I)  
85 FORMATC • .I8,3E18.7> 
C 
90 IFCLINREG .EQ. 33 GO TO 115 

L.INREG=LINREG-1 
PZER0=PZER01 
IF(LINREG) 125.95,105 

C 
95 DO 100 1 = 1,N 
100 X<I)=XMDCII) 

PZERC=PZER03 
GO TO 125 

C 
105 DO 110 1=1,N 
110 X(1>=XNORM( I)  

PZER0=PZER02 
GO TO 125 

C 
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115 DO 120 1=1,N 
120 X{I)=XSV(I) 

PZER0=1. 
125 CONTINUE 
C 
C THE INPUT TIME SERIES HAS SEEN PREPROCESSEO INTO A 
C CONVENIENT FORM. THE MEM AUTOREGRESSIVE COEFFI-
C CIENTS ARE NOW COMPUTED. INPUT VARIABLES ARE X(I) ,  
C PZERO.N.PT.MM.XTOELT.ANO FDELT. 
C 

CALL ATOREG( X.PZERO.N.PT. MM.XTDELT, FDELT, 
+PK,AK,K.NPT2,NPT 3)  

C 
C THE AUTOREGRESSI VE: COEFFICIENTS, AK(T),  HAVE NOW 
C BEEN ESTIMATED USING A LEAST-SQUARE ERROR 
C CRITERION. THESE COEFFICIENTS ARE NOW USED IN THE 
C MEM SPECTRAL ESTIMATOR TO OBTAIN AN ESTIMATE OF THE 
C POWER SPECTRAL DENSITY FUNCTION. 
C 

CALL MEMSPM(NS,K,XTOELT.FDELT,PK•A<,S.NMAX, 
+SBIG,IMAX,NPT4) 

C 
C COMPUTE SPECTRAL AMPLITUDES IN DB AND 
C FREQUENCIES FOR PLOTTING. 
C 

N«P1=NMAX+1 
DO 499 i=l»NMPl 
L=I— 1 
FR(I)=FLOAT(L)*FOELT 
SPLOT( I  3 = 10.*ALOG10(S( D/SBIGJ 
STEST=SPLOT(I)+40.  
IF(STEST) 498,498.499 

498 SPLOT(I)=-40.  
499 CONTINUE 
C 
c  **** USER SUPPLIED PLOT ROUTINES **** 
c as INPUTS as 
c 
c 
c TIME VARIABLE, XTIMEdJ. 
C INPUT DATA FUNCTION, X(I) .  
C DATA FUNCTION WITH DC-VALUE REMOVED, XMDC(I).  
C DATA FUNCTION AFTER LINEAR REGRESSION, XNORM(I).  
C STANDARD VARIABLES,XSV(I) .  
C 
c aa OUTPUTS as 
c 
C FREQUENCY VARIABLE IN HERTZ, FR<I).  
C POWER SPECTRAL DENSITY FUNCTION, SCI).  
C RELATIVE PSD IN DB. SPLOT(I).  
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C 
GO TO 4 

501 STOP 
END 

C 
C THIS SUBROUTINE ESTIMATES THE AUTOREGRESSIVE 
C COEFFICIENTS USING A MAXIMUM ENTROPY CRITERION 
C AND A MINIMUM LEAST SQUARE ERROR. 
C 

SUBROUTINE ATOREG(X »P2ER0.N»PT.MM,XTOELT,FDELT. 
+ PK,AK•K.NPT2.NPT 3 J 

C 
DIMENSION AA(IOO).AK(100),AKSAVE(100) 
DIMENSION B1(10 00}.32(1000).P(100 0) ,X(10 00) 

C 
INTEGER T,TP1 

C 
C COMPUTE THE STARTING VALUES, Bl(T),  B2CT ) ,  AK(1),  
C AND P(l)  FOR THE RECURSIVE EQUATIONS. 
C 

K=1 
B1(1)=X(1) 
NM1 = N-1 
B2(NM1)=X(N) 
DO 5 T=2,NM1 
BliT)=XCT) 

5 B2(T-1) = X(T) 
XN0M=0. 

XDEN=0. 
NMK=N—K 
DO 10 T=1.NM< 
XN0M=XNGM+B1(T)*32(T) 

10 XOEN=XDEN+Bl( T) *B1 (  T )+52 (  T )  «3? £ T) 
AKl1)=2••XNOM/XDEN 
AKSAVE(1)=AK(IÎ 
Pl l }=PZEP.O*(  l . -AK( 1)*AK( 1 )  )  
PRINT 15 

15 FORMATS•1••7X,«MEM STARTING VALUES:' , / / ,6X.*K',8X. 
+'A1(1)",11X.'P(1)' ,8X.'P(0)*,5X,'TOTAL POWER'./)  

PRINT 20.K,AK(Ii ,P(I) ,PZERO.PT 
20 FORMATtI7,E17«7.3E12.3// /> * 
C 
C COMPUTE AK(T) VALUES USING RECURSIVE EQUATIONS 
C 
25 <=K+1 

NMK=N-K 
KM1=K-1 
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125 DO 30 T=1,KM1 
126 30 AA(T)=AK(T) 
127 DO 35 T=1,NMK 
128 TPl=T+l 
129 t31(T) = bl  (T)-AA( KM13»32(T) 
130 35 B2(T)=B2(TP1)-AA(KM1)*31(TPl)  
131 XNCM=0. 
132 XDEN=0. 
133 DC 40 T=1,NMK 
134 XNOM=XNOM+61(T>«32(T) 
135 40 XOEN=XOEN+Sl(T)*ai (T)+32 (T)*52 (T) 
136 AK(K)=2.*XNOM/XO&N 
137 AKSAVECK)=AK(K) 
138 P{K ) =P( KMD# ( 1 ,-AK(K)*AK(K) )  
139 DC 45 T=1,KM1 
140 KMT=K-T 
141 44 AK(T)=AA(T)-AK{K)»AA(KMT) 

c 
C TC INHIBIT THE PRINTING OF ALL IMMEDIATE FILTER 
C CALCULATIONS AND COEFFICIENTS, CHANGE STATEMENTS 
C 45,  50,  AND 51 TO COMMENTS AND CHANGE THE RANGE 
C OF THE DC-LOOP FROM STATEMENT 45 TO STATEMENT 44.  
C 

142 45 PRINT 46,K,T,AK(T) 
143 46 FORMATC • ,2I8,E18.73 
144 50 PRINT 51 
145 51 FORMAT*///)  
146 IF( MM-K>52.55.25 
147 52 PRINT 53 
148 55 IF(NPT2.EQ.O) GO TO 71 
149 53 FORMATC* ' ,10X,'*** ERROR IN ATOREG ****,/ / )  
150 PRINT 60 
151 60 FORMAT*• ' ,7X,'SUMMARY OF ITERATIVE RESULTS*./ / .  

+5X.'INDEX'.3X.'COEFFICIENT'.6X.•EPRCR POWER*. 
+/ /  ,7X,'K' ,8X.'AK(K)' ,13X,'P(K)' . /}  

152 PK=P(K) 
153 DO 65 1 = 1.K 
154 65 PRINT 70 .  I .  AKSA VE( I  )  .  P( I  )  
155 70 FORMAT* 18.3E17.7//)  
156 71 PRINT 75,K.P(K) 
157 75 FORMAT*•!• .  9X,»AUTOREGRESSIVE ESTIMATION SUMMARY*. 

+/ / / ,8X.'LENGTH. K='.13.3XERROR POWER. P(K)='.  
+E13.7, / / / ,SX.'ORDER'.3X. 
-I-'AUTOREGRESSIVE COEFFICIENTS' . / / .  
+ 8X,'T'.9X»'AK* T) '  . / / )  

158 IF(NPT3 .EQ. 0)  GO TO 90 
159 DO 80 T=1»MM 
160 80 PRINT 85.T.AK(T) 
161 85 FORMAT*' ••I8,E18.7)  
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90 RETURN 
END 

C 
C THIS SUBROUTINE EVALUATES THE MEM SPECTRUM USING 
C THE CALCULATED COEFFICIENTS, AK(T), AND THE 
C SPECIFIED FREQUENCY INCREMENT. OELTA-F. THE ROUTINE 
C CALCULATES THE NYQUIST FREQUENCY AND LIMITS THE 
C FREQUENCY RANGE ACCORDINGLY. THIS ELIMINATES THE 
C POSSIBILITY OF COMPUTING ALIASED SPECTRA. 
C 

SUBROUTINE MEMSPMLNS•K.XTOELT,FDELT.PK,AK,S,NMAX 
+,SBIG,IMAX,NPT4) 

C 
DIMENSION AK(100).S(IOOO) 

C 
PI=3.1415926 
NMAX=INT(1./(2.*XTDELT*FDELT)) 
NMP1=NMAX+1 
PRINT 1 

1 FORMAT(«1',12X.*MEM POWER SPECTRAL DENSITY*.IX. 
ESTIMATION'.///) 
DO 10 I=1,NMP1 
L=I-1 

XL=FLOAT(L) 
PHI=2.*PI*XL*FOELT*XTDELT 
ALPHA=0.0 
BETA=0.0 
DO 5 J=1.K 
ALPHA=AK(J)•COS(J*PHI)+ALPHA 

5 BETA=AK(J)*SIN( J*PHI)+BETA 
0=(1.-ALPHA)*<1 .-ALPHA) + 3ETA*BETA 

LO S(I)=PK*XTDELT/D 
PRINT 14 

14 FORMAT!» '.SX,"THE LARGEST SPECTRAL COMPONENT IS:', 
+//.7X.'L'.4X.'FREQUENCY',7X.'AMPLITUDE'./) 

SBIG=0.0 
DO 15 I=2,NMPL 
XS=S(I ) 

15 IF(XS.GT.SBIG)S3IG=XS 
I  S=0 

20 IS=IS+1 
STEST=S{IS)-S81G 
IF(STEST) 20.21.21 

21 IMAX=IS-1 
FREQ=IMAX*FDELT 
PRINT 25.IMAX.FRE0.SBIG 

25 FORMATC ••I7.E12.4,E16.4,///) 
PS=0.0 
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197 DO 30 I=2.NMAX 
198 30 PS=PS+S{I)*FDELT 
199 PS=PS+S(1)*FOELT/2.+S(NMPl)*FDELT/2« 
200 PS=2.*PS 
201 PRINT 31.K,PS 
202 31 FGRMATC ' .SX.'THE TOTAL POWER IN THE ESTIMATED» 

•HX,«SPECTRUM IS* , / / ,6X,"LENGTH.K = ' ,13,5X, 
+'POWER=',E13.7, / / / / / j  

C 
203 IF(NPT4 .EG. 0)  GO TC 45 
204 PRINT 35 
205 35 FORMATC •  «ÔX .  «L •  ,  6 X ,  •  FREQ-HZ • .  6 X .  • NORMAL I  ZED • ,  

+3X,"TOTAL POWER*,3X,*RELATIVE', / ,27X,•SPECTRAL•,  
+19X.'AMPLITUDE',/ ,27X.«DENSITY*,7X,»D8*,13X,•DB* 

206 DO 40 I=1,NMP1 
207 L=I-1 
208 FREQ=L*FDELT 
209 PSl=S(I)*FOELT 
210 PS1=10.*AL0G10(PSl)  
211 PS2=S(I)/5BI6 
212 PS2=10.*AL0G10(oS2) 
213 40 PRINT 41«L,FREQ,S( I)«PSI »PS2 
214 41 FORMATC •  ,  17,EE 13.  3 ,F 11 .  1 ,Fi4.  1 )  
215 45 RETURN 
216 END 

MAXIMUM ENTROPY SPECTRAL ANALYSIS 

PTOPT LINREG NS MM DELTA-T, SEC DELTA-F, HZ 

1111 3 41 15 0.6000000E 02 0.25000COE-04 

INPUT DATA FUNCTION STATISTICS: HER A 7/29/75 

AVERAGE MEAN-SQUARE VARIANCE STANDARD DEVIATION 

0.82960E 02 0.31102E 05 0.248255: 05 0.15756E 03 

DATA FUNCTION STATISTICS AFTER 
LINEAR REGRESSION: 
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8 ZERO 

-0.  88342E 02 

SI VARIANCE STANDARD DEVIATION 

0.13S95E 02 0.15^76E 05 0.12360E 03 

INPUT DATA FUNCTION LINPEG STANDARD VARIABLES 

i  -0.6392999E 02 0  .  I625516E 02 0.1315165E 00 
2 -0.1643800E 03 - 0  .9235213E 02 -0.7471983E 00 
3 -0.2860801E 03 -0 .222209SE 0 3  - 0 . 1797 842E 01 
4 -0.3361799E 03 -0 .2804666E 0 3  -0.22691S5E 01 
5 -0.2902000E 03 -0 .2426439E 03 -0.1963172E 01 
6 -0.1010600E 03 -0 .6166125E 02 -0.4988860E 00 
7 0.84 05000E 02 0  .1152915E 03 0.9327948E 00 
8 0.  1956 2 00E 03 0 .2187041E 03 0.1769481E 01 
9  0.2508800E 03 0 .2658066E 03 0.2150 576E 01 

10 0.22 05500E 03 0  .2272195E 03 C.1839186E 01 
1 1 0.1111300E 03 0  .1C97423E 03 0.887S980E 00 
12 -0.2033000E 02 - 0  .3037497E 02 -0.2457564E 00 
1 3  -0.68720OOE 02 -0 .8642226E 02 -0.6992212E 00 
1 4  -0.3719000E 02 - 0  .6304955E 02 -0.5101184E 00 
1 5 0.7963000E 02 0 .4561317E 02 0.3690450E 00 
1 6  0.1437900E 03 0  .1016159E 03 0.8221490E 00 
17 0.1380600E 03 0 .8772861E 02 0.7097906E 00 
1 8  0.  1957 7 0 0E 03 0 .1372812E 03 0.1110708E 01 
1 9  0.14785OOE 03 0 .8120407E 02 0.6570022E CO 
20 0.5160001E 02 -0 .2320322E 02 -0.1877315E 00 
2 1 0«1438000E 02 -0 .6858051E 02 -0.5548680E 00 
22 -0.3524001E 02 -0 .12635 78E 03 -0.1022329E 01 
23 0.45 070 01E 02 -0 .5420503E 02 -0.4385S96E 00 
24 0.7531000E 02 -0 .3212231E 02 -0.2598937E 00 
25 0.2137500E 03 0 .9816025E 02 0.7941904E 00 
26 Oc2970300E 03 0 .1732830E 03 0.1401990E 01 
27 0.2561 599E 03 0  .1242556E 03 0.1005322E 01 
28 0.15541 OOE 03 0  .1534859E 02 0.1241816E 00 
29 0.74 78000E 02 -0 ,7343871= 02 -0.5941 745E 00 
30 0.4120000E 02 -0 .1151760E 03 -0.9318605E 00 
31 0.62670OOE 02 -0 .1018633E 03 -0.824150SE 00 
32 0.15240OOE 03 -0 .20290S3E 02 -0.  1641 6S6E 00 
33 0.2246000E 03 0 .4375220E 02 0.3539882E 00 
34 0.2379500E 03 0 .4894458E 02 0.3959985E 00 
35 0.241410ÔE 03 0 .4424756E 02 0.3579961E 00 
36 0.  1943700E 03 -0 .  1094971 E 02 -0.8859134E-01 
37 0.1155000E 03 -0 .9797690E 02 -0.7927070E 00 
38 0.9912000E 02 -0 .  1225141E 03 -0.9912317E 00 
39 0.1357500E 03 -0 .9404160E 02 -Û.7608674E 00 
40 0.2149100E 03 -0 .2303882E 02 -0.1864Û14E 00 
41 0.3344900E 03 0 .8838379E 02 0.71 50 915E 00 
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MEM STARTING VALUES: 

K  A K I J  P ( l )  P ( 0 )  TOTAL POWER 

1 0.7703549E 00 Û.407E 00 O.IOOE 01 0.311E 05 

2 1 0.1426599E 01 

3 1 0 .  1273918E 01 
3 2 -0.S961846E 00 

4 1 0 .1286666E 01 
4 2 -O.S537803E 00 
4 3 -0.2698378E 00 

5 1 0.1269Ô86E 01 
5 2 -0.4901221E CO 
5  3 -0.1391OAIE 00 
5 4 -0.2324146E 00 

6 1 0.12S5294E 01 
6 2 -0,47S7471E 00 
6 3 -0.1305848E 00 
6 4 -0.2021002E 00 
6 S 0.1573693E 00 

7 1 0.1249800E 01 
7 2 -0.4897244E 00 
7 3 -0.1126345E 00 
7 4 -0.1905018E 00 
7 5 0.1996245E 00 
7 6 -0.4964290E-01 
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1 0.1277999E 01 
2 -0.S0S4857E 00 
3 -0.4925A78E-01 
4 -0.2S0985ÎE 00 
5 0.1638636E 00 
6 -0.2051279E 00 
7 0.4856238E 00 

1 0.1214496E 01 
2 -0.4083553E 00 
3 -0.9026274E-01 
4 -0.2182105E 00 
5 0.1136636E 00 
6 -0.2149794E 00 
7 0.3845207E 00 
8 -0.6188023E-01 

1 0.1196949E 01 
2 -0.4137836E 00 
3 -0.S655H7E-01 
4 -0.2370692E 00 
5 0.1236346E 00 
6 -0.2341216E 00 
7 0.3766007E 00 
8 -0.9770262E-01 
9 -0.9347177E-01 

1 0.1195743E 01 
2 -0.4150690E 00 
3 -0.5789482E-01 
4 -0.2318900E 00 
5 0.1204148E 00 
6 -O.2324213E 00 
7 0.3733404E 00 
8 -Û.9848028E-01 
9 -0.9916228E-01 

10 -0.7126266E-01 
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12 I 0.1195573E 01 
12 2 -0.4159462E 00 
12 3 -0,59115425-01 
12 4 -0.2331021E 00 
12 S 0.1250103E 00 
12 6 -0.2352822E 00 
12 7 0.3748226E 00 
12 8 -0.1013346E 00 
12 9 -O.9987491E-01 
12 10 -0.7637179E-01 
12 11 0.9661391E-03 

13 I 0.1195349E 01 
13 2 -0.4159285E 00 
13 3 -0.6050623E-01 
13 A -0.23492Ô9E 00 
13 5 0.1231648E 00 
13 6 -0.2284563E 00 
13 7 0.3 705379E 00 
13 a -0.9905803E-01 
13 9 -0.1041199E 30 
13 lO -0.7744831E-01 
13 11 -0.6608676E-02 
13 12 0.946348SE-02 

14 1 0.1198529E 01 
14 2 -0.417S817E 00 
14 3 -C.5935176E-01 
14 4 -0.2213914E 00 
1 4  5 0.1413535E 00 
14 6 -0.2111518E 00 
14 7 0.3058087E 00 
14 8 -0.5914903E-01 
14 9 -0.1256 355E 00 
14 lO -0.3641000E-01 
14 11 0.3961150E-02 
14 12 0.8212191E-01 
14 13 -0.2270263E 00 

15 1 0.118473SE 01 
15 2 -0.3996 5Ô2E 00 
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1 5 3 -0.6S83589E- 01 
1 5  4 -0.2217042E 00 
I S 5 0.  1442283E 00 
I 5  6 -0.2012320E 00 
1 5  7 0.3104789E 00 
1 5  8 -0.  Ô329493F- 01 
1 S 9 -0.1089634E 00 
1 5 I C -0.47S7093E-01 
1 5 1 1 0 .2144169E-01 
1 5 12 0.S680815E-01 
1 5  1 3 -0.194C5S1E 00 
1 5  14 0.8005691E-01 

SUMMARY OF ITERATIVE RESULTS 

INDEX COEFFICIENT 

AK(K} 

ERROR POWER 

D(K) 

1 0 .7703 549E 00 0.4065534E 00 
2 -0 .8518724E 00'  0.1115230E 00 
3 -0 .1792291E 00 0.1079406E 00 
4 0 .7112604E- 01 O . l 0  7 3 9 4 5 E  00 
5 0 .2359126E 00 0.1014174E 00 
6 0 •6185063E-01 0.1010294E 00 
7 0 .88818Ô7E- 01 0.1002324E 00 
8 -0 .3 1 74 95 0E 00 0.9012360E- 01 
9 -0 .2000117E 00 0.8652300E-01 

10 -0 .S772367E-01 0.8585715E-01 
11 -0 .1375243E-01 0.858408eE- 01 
12 -0 .1230915E-01 0.85S2783E-01 
13 -0 .1821105E-01 0.8579934E- 01 
14 0 .1 746899E 00 0.8318102E-01 
IS 0 .7895762E-01 0.826624CE-01 
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AUTOREGRESSIVE ESTIMATION SUMMARY 

LENGTH, K= 15 ERROR POWER, P(K)=0.3266240E-0i  

ORDER AUTOREGRESSIVE COEFFICIENTS 

T AK(T) 

1 0 .11S4735E Cl 
2  -0.3996562E OO 
3  -0.65fi3589E-01 
4 -0.22 17042E 00 
5 0.1442283E 00 
6 -0.20 12320E 00 
7 0.3104789E 00 
8 -0 .  83 29 493E-C1 
9 -0.10S9634E 00 

10 -0 .  47 57 0 93E-01 
11 0.2144169E-01 
12 0.8680815E-01 
13 -0.1940551E 00 
14 0.8005691E-01 
15 0.7895762E-01 

MEM POWER SPECTRAL DENSITY ESTIMATION 

THE LARGEST SPECTRAL COMPONENT IS: 

L FREQUENCY AMPLITUDE 

T7 0.192SE-02 0.4210E 04 

THE TOTAL POWER IN THE ESTIMATED SPECTRUM IS 

LENGTH*K= 15 PCWER=0.9988377E 00 
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FREQ-H2 NORMALIZED TOTAL POWER RELATIVE 
SPECTRAL AMPLITUDE 
DENSITY DB DB 

0 O.OOOE 00 0.287E 02 -31.4 -21.7 
1 0  »250E-04 0.287E 02 -31 .4 -21.7 
2 0.500E-04 0.286E 02 -31.5 -21.7 
3 0.750E-04 0.285E 02 -31 .5 -21.7 
4 0,1 OOE-03 C.284E 02 -31.5 -21.7 
5 0.125E-03 0.282E 02 -31 .5 -21.7 
6 O.lSOE-03 C.280E 02 -31 .5 -21.8 
7 0.175E-03 0.278E 02 -31 .6 -21.8 
8 0.200E-03 0.277E 02 -31.6 -21 .8 
9 0.22SE-03 0.275E 02 -31 .6 -21.8 

10 0.250E-03 0.274E 02 -31 .6 -21.9 
11 0.275E-03 0.273E 02 -31.7 -21.9 
12 0.3COE-03 0.273E 02 -31 .7 -21 .9 
13 0.32SE-03 0.274E 02 -31.6 -21.9 
14 0.350E-03 0.276E 02 -31 .6 -21.8 
IS 0.37SE-03 0.279E 02 -31 .6 -21.8 
16 0.4 00E-03 0.283E 02 -31.5 -21.7 
17 0.425E-03 0.288E 02 -31 .4 -21.6 
18 0.450E-03 0.295E 02 -31 .3 -21.5 
19 0.475E-03 0.304E 02 -31.2 -21.4 
20 0.500E-03 0.315E 02 -31.0 -21 .3 
21 0.525E-03 0.328E 02 -30.9 -21.1 
22 0.550E-03 0.344E 02 -30.7 -20.9 
23 0.S75E-03 0.363E 02 -30.4 —20*6 
24 0*6 OOE—03 0.387E 02 -30.1 -20.4 
25 0.62SE-03 0.415E 02 -29.8 -20.1 
26 0•650E~03 0.449E 02 -29.5 -19.7 
27 0.675E-03 0.490E 02 -29.1 -19*3 
28 0.7OOE-03 0.539E 02 -28.7 -18.9 
29 0.725E-03 0.S99E 02 -28.2 -18.5 
30 0.750E-03 0.672E 02 -27.7 -18.0 
31 0.775E-03 0.761E 02 -27.2 -17.4 
32 0.8COE-03 C.869E 02 — 26*6 -16.9 
33 0.825E-03 C.IOOE 03 — 26.0 -16.2 
34 0.850E-03 0.116E 03 -25.4 -15.6 
35 0.675E-03 0.134E 03 -24.8 -15.0 
36 0.900E-03 0.1S4E 03 -24.1 -14.4 
37 0.925E-03 0.175E 03 -23.6 -13.8 
38 0.950E-03 0.193E 03 -23.2 -13.4 
39 0.975E-03 0.205E 03 -22.9 -13.1 
•0 0.1 OOE-02 0.209E 03 -  22.8 -13.0 
41 0.102E-02 0.203E 03 -22.9 -13*2 
42 O.lOSE-02 0.189E 03 -23.3 -13.5 
43 0.108E-02 0.171E 03 -23.7 -13.9 
44 O.llOE-02 0.151E 03 -24.2 -14.4 
*5 0.112E-02 0.133E 03 -24.8 -15.0 
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46 C.115E-02 C.116E 03 -25.4 -15.6 
•7 0.117E-02 0.102E 03 -25.9 — 16.  1 
48 0.120E-02 0.908E 02 -26.4 -16.7 
49 0.123E-02 0.813E 02 -26.9 -17.1 
50 0oî25E-02 0.735E 02 -27.4 -17.6 
51 0.127E-02 0.Ô72E 02 -27.7 -18.0 
52 0.130E-02 0.622E 02 -28.1 -18.3 
53 0.132E-02 0.581E 02 -28.4 -18.6 
54 0.135E-02 0.550E 02 -28.6 -18.8 
55 0.137E-02 0.S27E 02 -28.8 -19.0 
56 0.140E-02 0.510E 02 -28.9 -19.2 
57 0.142E-02 0.499E 02 -29.0 -19.3 
58 0.145E-02 0.495E 02 -29.1 -19.3 
59 0.148E-02 0.496E 02 -29.1 -19.3 
60 0.150E-02 0.503E 02 -29.0 -19.2 
61 0.152E-02 0.5Î7E 02 -28.9 -19.1 
62 0.1S5E-02 C.538E 02 -28.7 -18.9 
63 0.157E-02 0.569E 02 -28.5 -18.7 
64 0.160E-02 C.610E 02 -28.2 -18.4 
65 0.163E-02 0.666E 02 -27.8 -18.0 
66 0.165E-02 0.741E 02 -27.3 -17.5 
67 0.167E-02 0.842E 02 -26.8 -17.0 
68 0.170E-02 C.981E 02 -26.1 -16.3 
69 0.172E-02 0.118E 03 -25.3 -15.5 
70 0.175E-02 0.146E 03 -24.4 -14.6 
71 0.178E-02 0.191E 03 -23.2 -13.4 
72 0.180E-02 0.264E 03 -21 .8 — 12.0 
73 0.182E-02 0.398E 03 -20.0 -10.2 
74 0.1 85E-02 0.677E 03 -17.7 -7.9 
75 0.188E-02 0.138E 04 —14 .6  —4 .  8 
76 0.190E-02 0.338E 04 -10.7 -0.9 
77 0.192E-02 0.421E 04 -9.8 0.0 
78 0.195E-02 0.171E 04 -13.7 -3.9 
79 0.197E-02 0.734E 03 -17.4 — 7 .6  
80 0.2 00E-02 0.385E 03 -20.2 -10.4 
81 0.2 03E-02 0.232E 03 -22.4 -12.6 
82 0.2 05E-02 0.154E 03 -24.1 -14.4 
83 0.2 07E-02 0.109E 03 -25.6 -15.9 
84 0.210E-02 0.812E 02 -26.9 -17.1 
85 0.212E-02 C.628E 02 -28.0 -13.3 
86 0.215E-02 0.501E 02 -29.0 -19.2 
87 0.218E-02 C.410E 02 -29.9 -20.1 
88 0.2 20E-02 0.342E 02 -30.7 -20.9 
89 0.222E-02 0.291E 02 -31 .4 -21.6 
90 0.225E-02 C.251E 02 -32.0 -22.2 
91 0.2 28E-02 0.220E 02 -32.6 -22.8 
92 0.230E-02 0.195E 02 -33.1 23.3 
93 0.233E-02 0.  1 7 SE 02 -33.6 -23.8 
94 0.235E-02 0.158E 02 -34.0 -24.3 
95 0.237E-02 0.144E 02 -34.4 -24.7 
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96 0.240E-02 0.133E 02 -34.8 -25.0 
97 0 •243E-02 0.123E 02 -35.1 -25.3 
98 0.245E-02 0.115E 02 -35.4 -25.7 
99 0.247E-02 0.108E 02 -35.7 -25.9 

lOO 0.2S0E-02 O.IOIE 02 —36. 0  -26.2 
101 0•252E-02 C.962E 01 -36.2 — 26 .  4 
102 0.2SSE-02 C.916E 01 -36.4 —26 .  6 
103 0.2S8E-02 0.876E 01 -36.6 -26.8 
104 0.260E-02 C.840E 01 -36.8 -27.0 
105 0.262E-02 0.8 08E 01 -36.9 -27.2 
106 0.265E-02 0.779E 01 -37.1 -27.3 
107 0.268E-02 C.752E 01 -37.3 -27.5 
108 0.270E-02 0.727E 01 -37.4 -27.6 
109 0.2 73E-02 0.704E 01 -37.5 -27.8 
110 0.275E-02 0.681E 01 -37.7 -27.9 
111 0.277E-02 0.659E 01 -37.8 -28.  1 
112 0.280E-02 0.637E 01 -38.0 -28.2 
113 0.283E-02 0.616E 01 -38.1 -28.3 
114 0.285E-02 0.S94E 01 -38.3 -28.5 
l i s  0 .288E-02 0.572E 01 -38.4 -28.7 
116 0.290E-02 C.S50E 01 — 38.6 -28.8 
117 0.292E-02 0.528E 01 -38.8 -29.0 
118 0.295E-02 0.S05E 01 -39.0 -29.2 
119 0.298E-02 0.483E 01 -39.2 -29.4 
120 0o300E-02 0.46 IE 01 -39.4 -29.6 
121 0.302E-02 0.439E 01 -39.6 -29.8 
122 0.305E-02 0.418E 01 -39.8 -30.0 
123 0.308E-02 0.398E 01 -40.0 -30.2 
124 0.310E-02 0.378E 01 - 4 0 , 2  -30.5 
125 0.313E-02 0.359E 01 -40.5 - 3 3 . 7  
126 0.315E-02 C.341E 01 -40.7 -30.9 
127 0.317E-02 0.324E 01 -40.9 —31. 1 
128 0.320E-02 0.308E 01 -41.1 -31.4 
129 0.323E-02 0.294E 01 -41.3 —31.6 
230 0.32SE-02 C.280E 01 -41 .5 -31.8 
131 0.328E-02 0.268E 01 -41 .7 -32.0 
132 0.330E-02 0.256E 01 -41.9 -32.2 
133 0.332E-02 0.246E 01 -42.1 -32.3 
134 0.33SE-02 0.237E 01 -42.3 -32.5 
135 0.338E-02 0.229E 01 -42.4 -32.7 
136 0.340E-02 0.221E 01 -42.6 -32.8 
137 0.343E-02 0.215E 01 -42.7 -32.9 
138 0.345E-02 0.209E 01 -42.8 -33.0 
139 0.348E-02 0.205E 01 -42.9 -33.1 
140 0.350E-02 0.201E 01 -43.0 -33.2 
1*1 0.353E-02 0.198E 01 -43.1 -33.3 
142 0.355E-02 0.195E 01 -43.1 -33.3 
143 0.357E-02 0.194E 01 -43.1 -33.4 
144 0.360E—02 0.193E 01 -43.2 -33.4 
145 0.363E-02 0.193E 01 -43.2 -33.4 
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